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ABSTRACT 

Improving Ensemble Streamflow Prediction Using  

Interdecadal/Interannual Climate Variability 
 

by 
 

Kenneth W. Lamb 
 

Thomas C. Piechota, Examination Committee Chair 
Professor of Civil Engineering 

University of Nevada, Las Vegas 
 

The National Weather Service’s (NWS) river forecast centers provide long-term 

water resource forecasts for the main river basins in the U.S.  The NWS creates seasonal 

streamflow forecasts using an ensemble prediction model called the Extended 

Streamflow Prediction (ESP) software.  ESP creates runoff volume forecasts by taking 

the current observed soil moisture and snowpack conditions in the basin and applying 

them to historical temperature and precipitation scenarios.  The ESP treats every historic 

input year as a likely scenario of future basin conditions.  Therefore improving the 

knowledge about how long-term climate cycles impact streamflow can extend the 

forecast lead time and improve the quality of long-lead forecasts. 

First, a study of the existing climate indices is carried out in Chapter 3 to establish 

which index shows a significant long-lead connection to the Colorado River Basin 

(CRB).  Using Singular Value Decomposition (SVD) this step identifies a 1-year lagged 

relationship between the Pacific Ocean sea surface temperatures (SST) and CRB 

streamflow.  A new SST region is identified in this analysis (named the Hondo region) 

and compared to the other established climate indices (e.g. SOI, PDO, NAO, AMO).  The 

tests demonstrate Hondo performs better at longer lead times than the existing climate 

indices. 
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Second, Chapter 4 identifies the climate cycles impacting the CRB streamflow.  

The SVD analysis performed in Chapter 3 is extended to include the simultaneous (or  0-

year lag) as well as the 2nd and 3rd year lag times.  Because SST’s and streamflow are 

basically independent data, this chapter explains the physical connection between them 

by analyzing the relationship between the ocean, atmosphere and CRB streamflow.  This 

analysis, as well as recent research into the Pacific Quasi-Decadal Oscillation (PQDO), 

demonstrates that the CRB streamflow is dominated by a hierarchy of climate drivers.  

The Hondo is the secondary level which exists between the extreme impacts of the ENSO 

signal and the longer cyclical patters observed in the PQDO.  The current research shows 

that the QDO cycle leads precipitation by three years, and the Hondo leads the CRB by 

one to two years. 

Finally, the information from Chapter 4 reveals that the Hondo region can be used 

as a basis for weighing the ESP output.  This is done because water resource managers 

create multi-year water plans that are utilized to project power generation supplies and 

water system improvements.  In Chapter 5 several methods of weighing the ESP output 

based on the Hondo region are presented.  Each method is assessed using parametric and 

non-parametric forecast skill metrics.  The overall goal of this chapter is to identify a 

weighting technique, lag time, and season interval which show a marked improvement 

over simply using the 30-year mean as a streamflow predictor.  From this analysis the 

forecast skill score is optimized when using the January – March average SST values as a 

basis for forecasting the streamflow for the following water year. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Problem 

This dissertation seeks to improve the quality and length of lead time used in 

ensemble forecasts of streamflow.   The basic concept of ensemble forecasting can be 

explained as the use of some initial states (observed climate data) being applied as input 

into numerical weather models which simulate climate patterns.  The process produces 

various model outputs, or traces, which are the result of answering the question: what 

would have happened in the past if the current initial conditions had been present?  The 

number of traces created by the ensemble forecast model produces a probability 

distribution of time series data, from which, the mean trace or 95% confidence limits can 

be extracted.  

The use of ensemble forecasting has been developing for several decades.  

Gleeson (1961, 1970) introduced the concept of defining the probability space of a given 

climate field while using quantum mechanics and statistical mechanics to define a final 

distribution, or ensemble, of forecast values.  Epstein (1969) also provided some 

theoretical and practical approaches to handle the issue of uncertainty in numerical 

weather prediction (NWP) forecasts.  However, the theoretical equations proved to be 

extremely complicated and still were not capable of capturing enough of the atmospheric 

uncertainty to generate a reliable forecast.  Building upon this research Leith (1974) 

proposed and tested the skill of approximating the stochastic dynamic forecasting 

technique introduced by Epstein by using Monte-Carlo methods.  Since Monte-Carlo 
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methods are used to generate ensemble forecasts, the improvement in computing 

resources has automatically improved the frequency and quality of the forecasts. 

In the short term (3 – 7 days) ensemble forecasts have demonstrated good 

accuracy, but more importantly, the uncertainty of these forecasts is fairly well known.  

Once there is a shift from short-term to mid-term (10 – 30 days) forecasts, as well as 

long-term forecasts (monthly – seasonal) the significant autocorrelation of the climate 

states is eliminated and the model becomes heavily dependent upon the accuracy of the 

initial condition’s estimate and the NWP model (Wilks, 2006).  

1.2 Long Lead Ensemble Streamflow Forecasting 

The use of ensemble forecasts for climate forecasts is virtually the same for 

making streamflow forecasts, except that streamflow forecasts require a hydrologic 

modeling component to convert the forecasted temperature and precipitation data into 

surface runoff or snow pack.  Therefore the first step to increasing the forecast lead time 

is to incorporate knowledge of how the volume of water stored as snowpack contributes 

to runoff in the spring.  Whether using an ensemble streamflow forecasting technique or 

not, understanding the relationship between a basin’s snowpack and spring runoff can 

extend the forecast lead time (Miller et al, 2006; Grantz et al., 2005; Simpson et al., 2004; 

Cayan and Peterson, 1989). 

A second method to extending streamflow forecast lead times is to utilized 

climate data which demonstrates interannual, or even interdecadal persistence.  In this 

scenario, a climate event must have the ability to remain in an anomalous phase 

(observations which are significantly higher or lower than the expected seasonal values) 

for much longer than the forecast lead time.  There are many climate indices that have 
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been defined to represent persistent climate variability including the Pacific Decadal 

Oscillation (PDO), El Niño Southern Oscillation (ENSO), North Atlantic Oscillation 

(NAO) and the Atlantic Multi-decadal Oscillation (AMO).   While the discussion of how 

each of these climate indices has been used in research is given in Chapter 2, it is 

important to point out that this list is not exhaustive, nor is it impossible to expect that 

there are other climate patterns not currently defined by a climate index which may 

improve long-lead forecasts. 

1.3 Water Resource Planning Forecasts in the Colorado River Basin 

For stakeholders of the Colorado River Basin (CRB), having a better estimate of 

the streamflow before the spring runoff begins is necessary for them to make effective 

water management decisions. Water resource projection generated prior to a given water 

year are typically heavily dependent upon the historical average of runoff for the CRB, or 

historically ambivalent water-year outlooks which are modeled assuming all input years 

have equally probable impact on the coming year’s streamflow.  In order to assist water 

managers of the CRB, the National Weather Service’s (NWS) Colorado Basin River 

Forecast Center (CBRFC) issues three different types of forecasts.   

The first CBRFC water supply forecast is a 3-month forecast of monthly water 

volumes issued at the start of each month throughout the year.  The second forecast is a 

4-month lump sum water volume for the April – July runoff period.  This forecast is 

issued starting January 1 of each year and updated monthly through July 1.  The final 

forecast is actually referred to only as an “outlook” for the coming water year.  While this 

water-year outlook is generated using the same tool as the April – July forecast, there is 

less confidence in the output value for several reasons, including: lack of research 
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supporting 12-month forecasts, and unknown uncertainty in the model.  The outlook is 

issued on August 1 and then updated on October 1 (NWS CBRFC staff, personal 

communication, 2008).  

All three forecasts are generated using the same analysis tool: the Extended 

Streamflow Prediction (ESP) software (Day, 1985).  ESP forecasts are calibrated on the 

observed soil moisture, climate (Temperature and Precipitation) and runoff data from the 

30 period of 1976-2005.  The observed soil moisture conditions and snowpack 

measurements (if available) are used as the initial conditions for the ESP model.  The 

ESP uses the initial conditions and creates a time series of daily streamflow values (also 

known as a “trace”) by applying a time series of temperature and precipitation values 

from a year in the calibration period (e.g. 1976).  In all, the ESP analysis creates 30 

output traces: one for each calibration year.  From these 30 values, the median is reported 

as the forecast value, and the 5th, 10th, 90th, and 95th quartiles are reported as different 

confidence intervals (NWS CBRFC staff, personal communication, 2009).   

The April – July forecast is unique in that it is created in coordination with the 

National Resource Conservation Service (NRCS) who generate their own forecast for the 

runoff season (April-July) each year.  Before the CBRFC forecast is officially issued to 

the CRB stakeholders, CBRFC and NRCS staff meet to discuss their separate forecast 

results before issuing the “coordinated” runoff forecast for the CRB (NWS CBRFC staff, 

personal communication, 2008).   

After the ESP generates its forecast traces certain years can be assigned more 

significance than others based on climatic similarities between the forecast year and the 

calibrated historical years.  Research related to finding a post-analysis weight method has 
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been done on the April – July forecasts while using the average November – January 

Niño3.4 index as a predictor of seasonal streamflow (Werner et al, 2004).  Werner et al. 

were able to define a weighting technique for the April – Forecasts created by the ESP at 

two locations within the CRB, but because of the poor El Niño Southern Oscillation 

(ENSO) impact in the northern regions of the basin, the weighting technique was, 

predictably, non-significant.  Also noticeably absent from this paper was any discussion 

about how this research can improve forecasts (or outlooks) created more than a few 

months ahead of the spring runoff.  As such was the case, currently no research has been 

done to improve the water-year outlook created by the ESP. 

1.3.1 CRB Forecasts and the 24-Month Study  

Whether it is the 3-month forecasts, the April – July forecast, or the water year 

outlook, the forecast, and outlook, values are reported for a dozen locations in the upper 

CRB. The USBR uses the ESP and ESP/NRCS forecasts to create a 24-month projection 

of water resource storage and releases along the CRB by modeling the forecast inputs 

through the river basin modeling tool, RiverWare.  The 24-month study uses the ESP-

generated forecasts as the primary input into the RiverWare model for the first year of the 

study.  The second year of the study uses the 30-year average (1976-2005) observed 

streamflow values to continue their release/storage projections based on the various 

treaties, compacts, laws, and court decisions which make up the “Law of the River”. The 

24-month study is then issued to all stakeholders of the Colorado River including fish and 

wildlife, power generation and water consumption managers, all of whom use this 

information in their operation plans (USBR staff, personal communication, 2009).  
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There are many studies which demonstrate the uses of the 24-month study with 

respect to CRB water resources.  Background information into computer models used to 

manage storage and release schedules can be found in Schuster (1989), Fulp et al, (1991), 

and Zagona et al, (2001).  Most of the research regarding modeling of CRB streamflow 

and the 24-month study, try to simulate policy decisions on future river conditions based 

on using the Law of the River as constraints in the 24-month study (Stevens, 1986; 

Booker, 1995; Sangoyomi and Harding, 1995; Fulp et al, 1991; Gilmore et al., 2000).  

One study touched on the inputs and assumptions of the 24-month study (Garrick, et al, 

2008).  However, there are no studies which examine the quality of the 24-month study 

inputs, or ways to improve them. 

1.4 Existing CRB-Climate Teleconnections  

Recent research has provided many tools for the climate scientist to understand 

the connection between large-scale climate inputs (for example, sea surface temperatures 

(SST) and sea level pressure) with surface climate over the United States (Ropelewski 

and Halpert, 1986, 1989; Latif and Barnett, 1994; McCabe and Dettinger, 1999; 

Rajagopalan et al., 2000; Hidalgo, 2004; McCabe et al., 2007).  Due to the recent drought 

conditions in the desert southwest, much of this research focuses on ways to describe the 

changes Colorado River Basin (CRB) streamflow by observing large-scale climate 

variability over the Pacific Oceans (Grantz et al., 2005; Kim et al. 2006; Kim et al. 2007).  

The well known relationships between SST/SLP data and streamflow of the western 

United States are attributed to the El Niño Southern Oscillation (ENSO).  However, there 

are limitations to what information the ENSO can provide water managers of the CRB 

(McCabe and Dettinger, 2002). 
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The first limitation is that the effects of the ENSO, while easily correlated with 

surface climate of the northwestern and southwestern areas of the United States 

(Ropelewski and Halpert, 1986), has a poor signal over a large area covering central 

California, Nevada, Utah, Colorado and Wyoming which does not respond consistently to 

ENSO variability (Hidalgo and Dracup, 2003; Kahya and Dracup, 1993; Kahya and 

Dracup 1994b).  Clark et al. (2001) supposes that this region is a transition area between 

the positive ENSO-Streamflow correlation of the southwest, and the negative ENSO-

Streamflow correlation of the northwest.  Because of the focus on ENSO signals over 

larger regions of the U.S., there is no research that shows if any other climate index 

demonstrates significant correlation with the entire CRB. 

Another limitation to the ENSO is that its effect on surface hydrology of the 

western U.S. has a lead time which does not lend itself to improving the long-lead 

forecasts used in the 24-month study.  McCabe and Dettinger (2002), who tested a lagged 

response between ENSO and snowpack in the upper Rocky Mountains, found that 

summer-fall ENSO observations were correlated with snowpack measurements in the 

western U.S.  Since snowpack measurements are well correlated with spring runoff 

(Clark et al., 2001), this provided the potential for forecasting the April – July runoff 

about 7 months before the predictand period.  In order to improve the ESP outlook the 

research needs to show a relationship between the entire water year (October – 

September and not just April – July) volume, and the months leading up to that year.  

There are no studies which examine the limit of the lag response between the established 

climate indices and CRB streamflow. 
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1.5 Research Questions  

The overall goal of the proposed research is to develop an approach which is 

capable of improving the existing ESP outlook by establishing a weight methodology that 

will be applied to the ESP output to generate a new forecast.  This goal is broken down 

into the following three research questions: 

Question 1: Which large-scale climate patterns demonstrate a long-lead 

connection to most of the streamflow in the CRB? 

Hypothesis 1:  A 1-year lagged teleconnection will be identified, but it will most 

likely not be associated with an established climate index. 

Question 2: How does the Pacific Ocean climate impact streamflow in the 

Colorado River Basin? 

Hypothesis 2: The Pacific Ocean – CRB connection will be explained through 

analysis of atmospheric data and demonstrate a significant 

correlation with streamflow gauges in the CRB 

Question 3: Which climate lag-time and weight technique combination 

demonstrates the greatest potential for generating successful 

forecasts? 

Hypothesis 3: The optimal forecasting approach will improve upon the use of 

climatology as a forecast value and provide a basis for testing the 

ESP output 
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1.6 Research Tasks – Question 1 

1.6.1 Establishing a Long Lead Climate-Streamflow Teleconnection  

Question No. 1:  Which large-scale climate patterns demonstrate a long-lead connection 

to most of the streamflow in the CRB? 

The most well understood atmospheric or oceanic patterns used in research 

include the El Niño Southern Oscillation (ENSO) as represented by the Southern 

Oscillation Index (SOI), the Pacific Decadal Oscillation (PDO), the Northern Atlantic 

Oscillation (NAO), and the Atlantic Multidecadal Oscillation (AMO).  While there are 

many more climate indices representing different areas of the globe, these four are most 

often used in research when trying to define Climate-Hydrology teleconnections. 

Therefore these climate indices will form the foundation of the first question.  Aside from 

the existing climate indices an SST index will be “created” for the CRB and then 

compared to the other established climate indices.  All of the teleconnections are 

established using the climate data from a given water year with the streamflow volumes 

of the following water year.  A full description of the data and the origin of each data set 

is given in Chapter 2. 

 The first step to find an answer to the first question is summarized into the 

following tasks: 

1a) Define an SST region of the Pacific Ocean using Singular Value Decomposition 

(SVD). 

1b) Compare the existing climate indices with the SVD results using Rank Sum 

testing 
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1c) Assess the forecast potential of the results from (1a) and (1b) by creating a sample 

forecast using a weighted kernel approach to optimize forecast skill score. 

1.6.2 Defining the SST-Streamflow Teleconnection  

Yarnall and Diaz (1986) suggested the potential to create basin-specific indices.  

In light of the suggestion, the basic concept of  Singular Value Decomposition (SVD) is 

to provide an understanding of the covariance between two spatially distributed datasets 

(Prohaska, 1976).  Therefore the application of this method can work for finding the 

contribution of one data field upon another, so long as the have the same number of 

observations.  Since this is the case the application of this method has appeared widely in 

research whose aim is to describe the covariance of two meteorological data sets 

(Oikonomou et al., 2010; Grassi et al., 2009; Yang, 2009; Wu et al., 2007; Skinner et al., 

2006; Tootle and Piechota, 2006; Xue et al., 2005; Shabbar and Skinner, 2004; Kim et 

al., 2002; George and Saunders, 2001; Cholaw and Liren, 1999; Nakamura, 1996).  The 

utility of SVD was compared to other analysis techniques by Bretherton et al. (1992) and 

its companion paper Wallace et al. (1992).  In general, SVD is ideal for climate analysis 

because it provides a non-parametric explanation of the climatic contribution of one 

dataset on another. 

The use of SVD in the proposed work will use the 3-month average and 6-month 

average SST values of a 2º SST grid from 120º East to 80º West and 20º South to 60º 

North.  These two monthly averages are chosen arbitrarily, but they are intended to 

reflect a season, or two seasons, of SST data.  SVD analysis is run for various lag times 

to find the optimal long-lead lag time.  Figure 1.1 shows how each lag time will be tested.   

Since the goal is to improve the forecasts for the following water year, the initial lag time  
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Figure 1.1  Depiction of 3-month and 6-month lag-lead analysis 
(Qi = yearly total runoff measured at station i) 

 

(lag 0) is the July-September SST average and the April – September SST average for the 

3-month and 6-month analyses respectively.  Therefore, Lag 1 is the June-August SST 

average and March-August SST average for the 3-month and 6-month analyses 

respectively.  Each lag represents a one month step back in time, and there are lags 

generated until reaching the start of the previous water year (for example October-

December for the 3-month, lag 9; and October-March for the 6-month, lag 6). 

The output of the SVD analysis will be mapped to show regions where the 

covariance is significant (α = 0.05) between the SST gird location and a given streamflow 

gauge in the CRB.  These maps will help identify a specific region which represents the 

strongest covariance with CRB streamflow.  In addition to the maps the SVD also 

provides a Temporal Expansion Series (TES) which resembles the properties of a 
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standardized climate index.  The SVD TES can then used to compare its performance 

with the other existing climate indices using the Rank Sum Test. 

1.6.3 Inter-comparison of Climate Indices  

As mentioned earlier the comparison of the climate indices is performed using the 

two-sample Rank Sum test.  This is a non-parametric test where the null hypothesis is 

that two datasets have the same distribution (Alder and Roessler, 1977; Mann and 

Whitney, 1947; Wilcoxon, 1945).  By statistical proof, this test also shows that the 

median between two data sets are similar (Kvam and Vidakovic, 2007).  This test has 

many applications across many fields.  Therefore it is not surprising to find it used in 

climate data analysis (Timilsena et al., 2009; Miller and Piechota, 2008; Timilsena, et al., 

2007; Baughman et al. 1976).  The test is considered robust and resistant because it 

performs nearly as well as the t-test and it is not easily affected by outliers (Wilks, 2006). 

 The Rank Sum test is used in the proposed research to test if the positive or 

negative phase of a given climate variable has a significant impact on observed 

streamflow.  Streamflow observed under an index’s positive are compared to streamflow 

values observed under the negative phase to see if their median values are significantly 

different.  Similar to the lagged SVD analysis the Rank sum testing will be completed for 

various lag intervals (See Figure 1.1) using the 3-month and 6-month average index 

values, for each of the four (4) existing climate indices (SOI, PDO, NAO, AMO).   

After each climate index is tested alone, the rank sum testing is completed for the 

SOI-coupled variables.  Here the positive and negative phases of the PDO, NAO and 

AMO are tested based on the positive and negative phase of the SOI.  Figure 1.2 shows 

how the coupled analysis will take place.  As an example, during input years where the 
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SOI was in a positive phase the streamflow observed under a positive PDO phase was 

compared to those observed under a PDO negative phase.  A similar test is completed for 

the PDO-positive versus PDO-negative under the SOI negative phase.  The coupled index 

analysis is performed because research has demonstrated that the phases of the PDO, 

AMO, and NAO can augment or dampen the effects of the ENSO based on its phase 

(Timilsena, 2007). 

Six (6) coupled index testing scenarios are proposed along with four (4) stand-

alone scenarios.  These ten tests are then compared to the rank sum testing using the 

SVD’s TES as a stand-alone index.  In all, a total of 12 rank sum test scenarios are run 

for comparison purposes. 

 

 
Figure 1.2  Combination rank sum testing using the SOI as a basis 

 
 

1.6.4 Testing Forecast Potential  

In order to determine the forecast potential of the results obtained thus far the 

three Pacific Ocean indices (SOI, PDO, SST) will be used in a forecasting technique 

designed by Piechota et al. (1998).  The results of this technique demonstrate the 

contribution of each climate input to the overall forecast skill generated by assigning each 

input a weight between -1.0 and 1.0 to optimize the combined forecast skill score as 
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determined by the Linear Error in Probability Space (LEPS) score (more details about the 

LEPS score are provided below).  

1.7 Research Tasks – Question 2 

Question No. 2:  How does the Pacific Ocean climate impact streamflow in the Colorado 

River Basin? 

 Since the analysis from Task 1 may solely be a statistical relationship, it is 

necessary to analyze further the physical connection linking Pacific Ocean Climate with 

Colorado River Streamflow.  To accomplish this goal the following subtasks are 

proposed: 

2a) Use SVD on datasets which represent atmospheric climate fields such as zonal 

wind, geopotential height, and/or sea level pressure to identify the physical 

connection between Pacific Ocean SSTs and CRB streamflow  

2b) Compare the SVD analysis to current research into Pacific Ocean teleconnections 

with the intermountain west to identify common patterns between the proposed 

work and other research 

1.7.1 Extended SVD and Correlation Analysis 

This analysis will proceed in a similar manner with Task 1a.  The difference here 

is that this analysis will take place over a period of four (4) lag years rather than just one 

(1).  In order to compare this analysis with the results in Task 1a the SVD analysis of the 

SST-CRB relationship will also be extended to cover the same number of lag years as the 

climate research.  This subtask aims to identify persistent ocean and climate patterns most 

closely associated with the CRB.  The 3-month average SST, or climate values are 

compared with streamflow volumes from the “Analysis Water Year” (see Figure 1.3) 
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Figure 1.3  Depiction of extended 3-month analysis of climate data 

 
 

The SVD on the SST – Streamflow covariance matrix gives three matrices 

[SVD(covarTS) = U Σ V], where V represents the decomposed covariance values closely 

associated with the streamflow.  Therefore, given the decomposed matrix, V, and the 

original matrix of streamflow anomalies, S, the streamflow temporal expansion series 

(STES) is determined by the following equation:  STES = V’S’.  The result of this 

calculation is a series of values, one for each time period in V and S.  Once calculated, the 

STES is then correlated with cell of the Z500 and U200 gridded data.    

1.7.2 Comparison With Current Research 

 There are several studies by Wang et al. (2009, 2010a, 2010b, 2010c) that are 

significant to the proposed work trying to establish a connection between the Pacific 

Ocean and CRB Streamflow.   These studies represent an analysis of the long-lead 

climate drivers of precipitation in the intermountain west region of the U.S.  The reason 

these studies are of importance to the proposed work is that they identify the physical 

relationship between the Pacific Ocean cycles and the lagged response in precipitation.   

 According to several studies (Ely et al. 1994; Harnack et al., 1998; Schafer and 

Steenburgh 2008) the precipitation in the intermountain west is typically produced by 

transient synoptic activity (i.e. cyclone waves and the interaction of frontal passages with 
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orography - the spatial variation in the atmosphere).  Wang et al (2009) identified that the 

Pacific Ocean SSTs have a 10-20 year cycle, and that this cycle leads a precipitation 

cycle of similar length by about 3-years.  Wang et al (2010a) show that the Pacific Ocean 

cycles are actually closer to 12 years and are best represented by the central equatorial 

region of SSTs (essentially the Niño4 region: 5˚N-5˚S and 160˚E-150˚W).  This study 

analyzed the water vapor flux data in order to identify the leading modes of the transient 

synoptic activity impacting the intermountain west.  The results of this analysis showed 

that there is a 3-year lag between the first two principle components of the moisture flux 

data, and the first component is highly correlated with the Niño4 data and the second 

component is highly correlated with the precipitation cycle. 

The work of Wang et al (2010c) analyzed the moisture flux potential data to 

determine the specific mechanism drawing storm activity into the intermountain west 

region.  The second mode of the principle component analysis revealed the t short 

atmospheric wave pattern beginning in western tropical region (east of the Philippines) 

and ending off the coast of the pacific Northwest coast of the U.S. this wave track is the 

primary driver of the persistent climate anomalies toward the western U.S. 

 The works by Wang et al provide the proposed work with a foundation upon 

which to build.  The circulation patterns and leading cycles identified will provide a basis 

for understanding the results generated in the proposed work.  For example since the 

foundation identifies a 3-year lag time between Pacific Ocean SSTs and the precipitation 

in the intermountain west, then the proposed analysis should resemble this lag time as 

well.  Also since the short wave track identifies several region of significance between 



www.manaraa.com

17 

the tropical pacific and the western U.S. the proposed research should identify at least 

one of these regions as significant in the SVD analysis.  

1.8 Research Tasks – Question 3 

Question No. 3:  Which climate lag-time and weight technique combination demonstrates 

the greatest potential for generating successful forecasts? 

Building upon the results from the first question the approach to the second 

question is broken down into the following tasks: 

3a) Calculate probability weights for years based on the three most significant SST 

regions identified in Task 1b using four (4) weighting kernels 

3b) Assess forecast skill of kernel-interval input combination using weighted 

bootstrap technique to create a cross validation forecast for CRB streamflow from 

1976-2005 

3c) Using the best weight kernel-interval input combination from Task 2b, re-forecast 

streamflow for 1906 – 1974 

1.8.1 Weight Kernel Selection  

Four different kernels are selected to create forecast values.  The kernel which 

results in the highest improvement in forecast skill is considered the optimal choice.  The 

first weight kernel is taken from research by Rajagopalan and Lall (1999) which is used 

in a k-Nearest Neighbor (k-NN) technique to downscale climate data from yearly 

observations to daily data.  The kernel is defined as follows: 
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Here Ri, is the rank of a training year i.  The kernel is designed to represent directly the 

probability of resampling as its weights have a possible values of 0 – 1. Since this weight 

kernel is based on the rank alone, there is some concern that regardless of the difference 

in Hondo values, there will always be a year which receives a weight of 1. 

The second kernel selected is a linearly distributed proportion based on the 

absolute differences in SST values.  W2 is defined as: 
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The values di and di,max represent the distance between year i and the forecast year, and 

the maximum distance calculated from all years, respectively.  The absolute value is 

taken because it does not matter if the training year is more or less than the test year.  

This kernel has two purposes.  First, a given year could only have a resampling value of 

one if and only if the observed SST is the same as the target year SST.  Second, each 

successive weight is distributed on a roughly linear, but negative, sloping line so that year 

i has only slightly more weight than year i+1.  However, since the behavior of this kernel 

is a decreasing linear distribution of weights, then there is a chance that it will give too 

much weight to years which are not actually “near” to the target year.
 

The third weight, W3 is given as the inverse distance squared weight:  
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Once again, di is the difference between the training year and the forecast year.  Because 

the theoretical values of W3 range from -∞ to ∞, the weights for each forecast year are 

proportioned so that values range between 0 and 1 and their sum is equal to 1. This 

weight kernel has a plotted behavior similar to W1 except that it gives even less weight to 
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observations with increasing values of di.  Since this kernel does shift the majority of the 

weight to the first or second years some relevant information from other years may be 

ignored.  

The final kernel, W4 is simply the inverse distance: 

1
4i

i

W
d

=  

Both W3 and W4 are commonly used kernels used in resampling and interpolating 

applications or as comparisons to other more sophisticated methods.  W4 does not weigh 

the closest 1 or 2 as heavily as W1 or W3, but since it is not linear it also does not 

distribute the weights to too many of the other, adjacent observations. 

Weights are calculated using the raw SST values.  A test was run to see if there 

would be any difference between using raw data and calculating the Hondo anomalies 

which were used in the SVD analysis (Lamb et al. 2010, Aziz et al,. 2010).  The results of 

this simple test demonstrated that there was no significant difference between the forecast 

skill score resulting from these two data sets. Additionally, using proportioned weights 

were compared to raw (un-proportioned) weights to see if the forecast skill is sensitive to 

either method.  The results of this test demonstrated that there was no significant 

difference.  From these two small tests the use of the raw Hondo data is selected for 

testing because it is simpler to employ, and the proportioned weights are used because 

they communicate the idea of resampling probability better than the raw weights. 

The weighting kernels determine resampling probabilities for each of the 30 years 

in the analysis period.  Since these are being applied to 30 years in the cross-validation 

analysis, a 30 x 30 matrix of values is created from a given weight kernel.  Once matrix 

of probabilities is created for each weight kernel selected.  Since the weight kernels are 
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also based on which 3-month average SST values are used (i.e. Dec-Feb, Jan-Mar, or 

Feb-Apr) a total of 12 probability matrices are calculated to generate the forecasts for 

Task 2b.  

1.8.2 Cross-Validation Forecast Skill  

Using the results from 2a, the forecasts are generated for each kernel-SST 

interval.  This is done using a weighted bootstrap technique.  The bootstrap technique 

was first developed by Efron (1979, 1982) in order to make estimates of population 

parameters from relatively small datasets.  This method is selected because it, like the 

other statistical methods proposed in this research, is non-parametric.  The current 

research proposed using the weighted (or generalized bootstrap) method to intentionally 

introduce a bias to the resampling process (Barbe and Bertail, 1995). 

 In order to preserve the ~1 year lag between the Pacific Ocean SST region and the 

streamflow observations the probability weights are actually calculated on the data set 

from 1975-2004, and then applied to the observed data from 176-2005.  The 30 year 

period from 1976-2005 is significant because this is the current 30 period upon which the 

CBRFC ESP model is calibrated.  Using this 30-year period will provide a better basis for 

comparison in future research tasks. 

 The forecast skill score is determined using the Linear Error in Probability Space 

(LEPS) score.  This score was initially developed by Ward and Folland (1991) and 

further revised by Potts et al. (1996).  The score measures the distance between the 

observed and forecast values in probability space.  To do this the LEPS score requires 

that an empirical distribution function (EDF) be created for each streamflow gauge.  The 



www.manaraa.com

21 

probabilities for the observed and forecast values are read from the appropriate EDF and 

then inserted into the following equation developed by Potts et al.: 

2 23(1 | | ) 1f o f f o vLEPS P P P P P P= − − + − + − −
 

 After the forecast skill is calculated at each location for each year in the cross-

validation analysis, the average skill score is determined for each location in the CRB.  

The average skill score is ranges from -1 to 1 with a score of 0 being as good as 

forecasting with the mean.  Scores which are greater than 10% are considered as “good” 

skill.  These results will help determine which weight kernel, applied to which 3-month 

average SST interval, was most successful.
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

 The proposed dissertation is based upon several general topics, which include 

long-lead streamflow forecasting and the data typically used in such forecasting  The 

following chapter describes the basis of research regarding the recent improvements to 

long-lead forecasting as well as the state of knowledge surrounding the data, which 

include the Southern Oscillation Index (SOI – measure of the ENSO signal), Pacific 

Decadal Oscillation (PDO), Atlantic Multi-decadal Oscillation (AMO), and North 

Atlantic Oscillation (NAO) datasets.  Also included in the proposed research is sea 

surface temperature data, the naturalized/unimpaired streamflow data, and the historic 

forecast data. 

2.2 Streamflow Forecasting 

 As noted in Chapter 1, the major goal of the proposed dissertation is to improve 

upon the current knowledge of long lead streamflow forecasting.  For many years, 

deterministic forecasts generated by understanding the relationship between snowpack 

and spring runoff provided the only methodology to long-term streamflow forecasting 

(Druce, 2001).  In 1975 the Hydraulic Research Laboratory of the NWS in initiated a 

program to create the Extended Streamflow Prediction (ESP) procedure.  Day’s (1985) 

work essentially marked the beginning of ensemble streamflow forecasting procedures 

even though it did not wholly supplant any other forecasting method then or since (e.g. 

Krzysztofowicz,1999; Kalra and Ahmad, 2009).   
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The application of the ESP is not focused on just streamflow forecasting, or has it 

been limited to the United States.  For example Faber and Stedinger (2001) coupled the 

ESP with a dynamic optimization procedure to analysis optimal reservoir operation 

policies.  Hamlet et al. (2002) used ESP to asses the economic impact of improved 

streamflow forecasting.  As eluded to earlier the ESP has been applied to river basins in 

other countries such as Israel (Shentsis and Ben-Avi, 2001), Korea (Jeong and Kim, 

2005), and Brazil (Souza Filho and Lall, 2003).  

In addition to software improvements, some credit to improving long-term 

forecasting capability should be given to the El Niño event of 1982-1983.  Prior to this 

event much of the research of the Pacific Ocean did not focus on the ENSO as the driving 

force of climate variability in the United States (Rasmusson and Wallace, 1983).   

However since this time it is hard to find interseasonal climate research in the Pacific 

Ocean basin which does not mention the ENSO cycle.  The impact of the ENSO provided 

water resource researchers the tool to connect summer/fall sea surface temperatures in the 

equatorial Pacific Ocean with the snowpack expected the following winter.  Building 

upon the existing knowledge of the snowpack-spring runoff connection, researchers 

began using the ENSO to extend the lead time for forecasting streamflow (Hamlet and 

Lettenmaier, 1999; Clark et al, 2001; McCabe and Dettinger 2002; Werner et al 2004; 

Grantz et al, 2005).  After the ENSO connection was established, other climate indices 

were identified as having a measurable impact on streamflow in the United States such as 

the PDO (Hidalgo and Dracup, 2003; Hidalgo, 2004; Beebee and Manga, 2004, Tootle et 

al., 2005; Timilsena et al., 2009).  Therefore the understanding that streamflow 
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forecasting could take place well in advance of the spring runoff season became a 

commonly accepted idea by the start of the last decade. 

It should be pointed out here that the ESP tool and the use of large scale climate 

as predictors in long-term streamflow forecasting, have largely been developed without a 

comprehensive discussion about the model uncertainty (Krzysztofowicz,, 2001).  Even 

thought the ESP output is often communicated in terms of probability (e.g. median 

forecast with 95% confidence limits), it does not discuss the sampling error imbedded in 

the model’s initial states or the 30 calibrated years used to represent the population of 

precipitation and temperature time series.  ESP and large-scale climate uncertainty is a 

large enough topic that it would warrant considerable work to fully address.  However, 

for completeness’ sake the limitations of the ESP are simply mentioned. 

2.3 Pacific Ocean Climate Indices 

Data from the Pacific Ocean has been logically linked with many hydrologic 

responses in the world and especially in the United States, as is demonstrated below.  The 

two most widely used climate indices representing the Pacific Ocean include the 

Southern Oscillation Index (SOI), representing the ENSO signal, and the Pacific Decadal 

Oscillation (PDO).  The SOI is a measurement of sea level pressure (SLP) and the PDO 

is a measurement of sea surface temperatures.  

2.3.1 El Niño Southern Oscillation  

The ENSO is perhaps the most widely known climate variable outside of 

academic circles.  This acronym refers to both the warm and cool phases of the 

oscillation known as El Niño and La Niña respectively.  It was initially observed by Sir 

Charles Todd, but not named, in the 1880’s, but it was ultimately defined by Sir Gilbert 
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Walker and his collaborators in publications in 1923 and 1932 as a “seesaw” of sea-level 

pressure (Diaz and Markagraf, 1992).  The increase in the South Pacific High diminishes 

the tradewinds pushing east towards South America which results in warming SST’s.  As 

SST’s increase so does the evaporation and heating in the troposphere which improves 

the conditions for “convection and rainfall” (Diaz and Markagraf, 1992). 

Currently there are several indices used to define the ENSO phenomenon.  These 

indices include several sea surface temperature (SST) indices such as the Wright SST, 

Niño1&2, Niño3, Niño3.4 and Niño4.  In addition to the SST indices there is an index 

created from sea level pressure (SLP), called the Southern Oscillation Index (SOI) and a 

composite wind, pressure, and temperature index called the Multivariate ENSO Index 

(MEI).  Each has been used in various teleconnection studies and none is officially 

accepted as the only index to represent the ENSO. Figure 2.1 shows a time series plot of 

the SOI index from 1950 – 2010.  

The proposed research uses the SOI to represent the ENSO which is maintained 

by the National Oceanic Atmospheric Administration’s (NOAA) Climate Prediction 

Center (CPC) and it can be downloaded from their website 

(http://www.cpc.ncep.noaa.gov/data/indices/soi).  The SOI dataset covers monthly values 

from 1951 through the current year.  The SOI is defined as the difference between the 

standardized SLP anomalies at Tahiti and Darwin, Australia.  These observations 

describe the seesaw event that Walker (1923) and Walker and Bliss (1932) divide.  As 

SLP values increase in Darwin, there is a resulting decrease in SLP at Tahiti and vice 

versa.  Therefore a positive SOI phase occurs when the Tahitian SLP anomaly is greater 
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than the observation at Darwin, and when Darwin is larger the SOI is in a negative phase. 

Positive SOI phases correspond to increased SST (El Niño) events.  
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Figure 2.1  Mean SOI values 1951-2009 (monthly-grey / yearly-black) 

Data obtained from Earth System Research Laboratory 
http://www.esrl.noaa.gov/psd/data/climateindices 

 
 

The effects of ENSO have been linked to hydrologic responses across the globe 

(Diaz and Markagraf, 2000).  Aside from the studies already listed earlier there are many 

other studies which demonstrate ENSO teleconnections with U.S. hydrology (Kiladis and 

Diaz 1989, Cayan and Peterson, 1989, Redmond and Koch 1991, Hanson and Maul, 

1991, Cayan and Webb, 1992, Dracup and Kahya, 1992; Kahya and Dracup, 1993; 

1994a; 1994b; Piechota and Dracup, 1996; Shabbar et al., 1997; Piechota, et al., 1997; 

Zorn and Waylen, 1997; NRCS, 1997; Brandon, 1998; Hamlet and Lettenmaier, 1999; 
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Schmidt et al., 2001; Harshburger et al., 2002; Maurer and Lettenmaier, 2003; Hidalgo 

and Dracup, 2003; Hidalgo and Dracup, 2004; Beebee and Manga, 2004; Tootle and 

Piechota, 2004; Mauer, et al., 2004; Hidalgo, 2004; Twine et al., 2005).  Despite the 

shortcomings of the ENSO already mentioned earlier, the ENSO-U.S. Hydrology 

teleconnection has been discussed enough that is included here as a way to show that the 

testing being done with the current research matches up with past research. It is expected 

that the ENSO signal will appear during the short lag times and for gauges located in the 

lower CRB. In the context of the current research, it is also expected to show the limit of 

the ENSO-CRB teleconnection. 

2.3.2 Pacific Decadal Oscillation 

When discussing the CRB, the second most common climate index is the Pacific 

Decadal Oscillation (PDO).  The PDO is defined as the first mode of the principal 

component analysis of Pacific Ocean SSTs poleward of 20º N.  The anomalies and the 

impacts of the PDO were initially observed by Nitta and Yamada (1989) and Trenbreth 

(1990).  PDO fluctuations have a period between 50-70 years with a given warm or cool 

phase persisting for about 15 – 25 years (Chao et al., 2000; Minobe; 1997).  The 

mechanism driving PDO variability is not known, but it is hypothesized by Trenberth and 

Hurell (1994), that the origins of the PDO can be found in the tropical Pacific Ocean.  

PDO data are available from the Joint Institute for the Study of the Atmosphere and 

Ocean at the University of Washington for the period of 1900 through the current year 

(http://jisao.washington.edu/pdo/PDO.latest).  Figure 2.2 shows a time series plot of the 

PDO data. 
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Figure 2.2  Mean PDO values 1950-2007 (monthly-grey / yearly-black) 

Data obtained from Earth System Research Laboratory 
http://www.esrl.noaa.gov/psd/data/climateindices 

 
 

Similar to the ENSO, the PDO teleconnection has been identified around the 

Pacific Ocean basin.  Studies showed symmetric atmospheric circulation changes 

associated with the PDO (Gerreaud and Battisti, 1999; Zhang et al., 1997b).  Power et al 

(1997, 1999a, 1999b) showed how changes in the PDO impact Australian temperatures 

and rainfall.  However, a large number of studies demonstrate the impact the PDO has on 

marine biology (Mantua and Hare, 2002; Hare et al., 1999; Beamish, 1993; McFarlane 

and Beamish, 1992; Clark et al., 1999). 

The climate impacts of the PDO have been shown to explain hydrologic 

variability in the western U.S. under several different circumstances including ENSO-



www.manaraa.com

29 

PDO coupling (Minobe, 1997; Gershunov and Barnett, 1998; McCabe and Dettinger, 

2002; Hidalgo and Dracup, 2003; Hidalgo, 2004; Beebee and Manga, 2004, Tootle et al., 

2005; Timilsena et al., 2009).  In general, the PDO signal is often discussed in the context 

of ENSO, because the PDO signal can either enhance or diminish the ENSO signal, 

depending on the phase of the PDO (Hamlet and Lettenmaier, 1999).  While there are 

many studies which have discussed the impact of the ENSO, and the PDO, as well as the 

ENSO-PDO effect on streamflow in the CRB, there is no study which defines the lagged 

climate-hydrology response of these climate variables on the CRB. 

2.4 Atlantic Ocean Climate Indices 

 The proposed research proposes to use Atlantic Ocean climate data to understand 

the long-lead impacts associated with the CRB though there is significantly less research 

connecting the two than with Pacific Ocean data.  The two datasets selected for this work 

include the Northern Atlantic Oscillation (NAO) and the Atlantic Multidecadal 

Oscillation (AMO). However, Marshall et al (2001) point out that the North Atlantic 

Ocean temperature and pressure variability can have an effect on weather throughout the 

northern hemisphere.  Because, as Marshall et al. point out, the NAO is a part of the 

northern hemisphere circulation which is described by the Arctic Oscillation (AO).  They 

go on to demonstrate that the NAO/AO impacts can rival those of the ENSO signal from 

the Pacific Ocean.  Because of this information, there is a good reason to include Atlantic 

Ocean climate data when considering streamflow responses in the CRB. 

2.4.1 Northern Atlantic Oscillation  

The NAO is defined as the anomaly differences in sea level pressure between the 

Azores and Iceland (Hurell, 1995), and has also since been identified as part of northern 
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annular mode, the Arctic Oscillation (Marshall et al., 2001).  Interestingly, 

teleconnections identifying the NAO were made in the same studies that originally 

identified the ENSO signal (Walker, 1924; Walker and Bliss, 1932).  When in a positive 

phase, the North Atlantic Jet moves poleward taking with it the storm track (Kushnir, 

1994).  Barnston and Livezey (1987) describe the NAO contracting northward in summer 

and expanding southward in winter giving it a variable location which thought to be the 

result of changes in North Atlantic SSTs (Kushnir et al., 2006).  Unlike the ENSO and 

PDO the NAO index does not remain in one phase for an extended period of time (See 

Figure 2.3).  Its short period of 12-14 days is the result of seasonal-to-interannual (S/I) 

variability (e.g. affected by volcanic activity or internal dynamics of the climate system) 

and is therefore nearly impossible to predict (Kushnir et al., 2006).        

The NAO index is most famously teleconnected to climate in the northern 

Atlantic Ocean (Visbeck et al. 2002; Kushnir 1994; Deser and Blackmon 1993; Wallace 

et al. 1992; Bjerknes 1964).  This basic understanding of changes in Atlantic SSTs has 

led to many studies linking the NAO to hydrologic responses across Europe (Ionita et al., 

2009; Karcher et al., 2007; Macklin and Rumsby, 2007; Ukita et al., 2007; Otterson et al., 

2000; Frei and Robinson, 1999; Higuchi et al., 1999; Dugam et al., 1997; Nakamura, 

1996; Hurell, 1995; Zhifang and Wallace, 1993; Van Loon and Rogers, 1978;).  Other 

studies have shown that this index can also explain variation in surface hydrology across 

the United States.   Morin et al. (2008) demonstrated that the primary mode of total 

snowfall and number of snow days in the eastern United States is driven by the NAO.  

Durkee et al. (2008) showed that there is an increase in precipitation across the eastern 

United States when the NAO is in a positive phase. The use of positive and negative 
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phases of the NAO were also linked to changes in CRB streamflow by Tootle et al 

(2005).  Because the NAO is a measure of SLP, it is possible to describe the physical 

connection of the index to changes in storm tracks across Europe.  However no 

explanation is given for the NAO – North American teleconnection.  
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Figure 2.3  Mean NAO values 1950-2009 (monthly-grey / yearly-black) 

Data obtained from Earth System Research Laboratory 
<http://www.esrl.noaa.gov/psd/data/climateindices> 

 
 
 

2.4.2 Atlantic Multi-Decadal Oscillation  

The AMO represents a persistent SST pattern observed in the northern Atlantic 

Ocean between 0 – 70 degrees north bounded by the continents (Gray et al., 2004).  In 

contrast to the other indices discussed, the AMO does not vary drastically, and it is by far 

the index with the longest cycle period.  It is estimated from modeling studies to be 50-70 
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years, and from tree-ring and arctic ice regression as closer to 80 years (Schlesinger and 

Ramankutty, 1994; Kerr, 2000).  Figure 2.4 shows a time series plot of the AMO from 

1950 – 2009.  While the initial observation of the index may be attributed to Schlesinger 

and Ramankutty, the definition of the AMO as an actual oscillation has largely come 

from work aimed at extending the AMO through analysis of reconstructed SST datasets 

(Gray et al., 2004; Knight et al., 2005).  The increased understanding about the physics of 

the AMO index (Dijkstra et al., 2006) comes from the studies which defined the 

teleconnection of AMO and the Thermohaline Circulation (THC) (Sutton and Hodson, 

2005; Knight et al., 2005; Dima and Lohman, 2007, Richter and Xie, 2009).  

Understanding the AMO cycle has also helped understand the trends related to climate 

change (Hodson, et al., 2009; Keenlyside et al., 2008). 

Because the AMO index is also the youngest index there are fewer examples of 

using this index in teleconnection studies.  The AMO appears in research into 

teleconnections with changes in Asian summer monsoons (Lu et al, 2006), Indian and 

Sahal summer rainfall (Zhang and Delworth, 2006), northern Pacific Ocean variability 

(Zhang and Delworth, 2007) and climate in east China (Shuaunglin and Bates, 2003).  

Some of these teleconnections were also checked in the reconstructed AMO dataset 

(Knight et al., 2006).  Logically it also figures into research related to changes in 

hurricane activity in the Atlantic Ocean and the resulting changes in precipitation in 

countries adjacent to the Atlantic basin. 

Goldenberg et al. (2001) used the AMO data to help explain the increase in 

Atlantic Hurricane activity.  Because of the longer trends of the AMO data, the study 

concludes that the increased hurricane activity will persist for many years.  Trenbreth and 
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Shea (2006) used the observed 2005 hurricane season as a backdrop to discuss the 

observed increases in global temperature as a result of climate change and increases in  
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Figure 2.4  Mean AMO values 1950-2009 (monthly-grey / yearly-black) 

Data obtained from Earth System Research Laboratory 

http://www.esrl.noaa.gov/psd/data/climateindices 

 

 

the AMO oscillation.  Finally, Holland and Webster (2007), defined three regimes of 

eastern Atlantic SSTs where there are 50% more cyclones and hurricanes in each 

successive regime.   

The connection between AMO and US streamflow has also been introduced in 

studies showing changes in streamflow across the US, (Enfield et al., 2001), in Florida 

(Kelley and Gore, 2008) and in gaining an understanding of long-term drought observed 

in the southwest (Hidalgo, 2004).  More pertinent to the current research the AMO-
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ENSO coupled effect has appeared in studies looking at the Mississippi Valley 

streamflow (Rogers and Coleman, 2003) as well as in the CRB (Timilsena et al, 2009, 

Tootle et al, 2005).  The AMO index data from 1948 through the present can be 

downloaded from the CPC’s website (http://www.cdc.noaa.gov/Correlation/ 

amon.us.data).  

2.5 Global Gridded Climate Data 

 In addition to using specific climate indices, the proposed research will use data 

which is created for the entire globe and represented in a gridded format.  These data 

include Sea Surface Temperatures (SSTs), 500mb Geopotential Height (Z500), and 

200mb Zonal wind (U200).  The purpose of using the “raw” global data is to be able to 

identify climate patterns which may not be represented in the defined climate indices 

already listed 

2.5.1 Sea Surface Temperature Data 

The SST data used in the proposed research comes from work by Smith and 

Reynolds (2002) at the National Climate Data Center (NCDC) of the National Oceanic 

Atmospheric Administration (NOAA).  Officially named the Extended Reconstructed Sea 

Surface Temperature (ERSST) dataset, it comprises of monthly average values at 2-

degree grid cells covering the entire globe from 1854 – 1997.  The dataset has been 

improved (Smith and Reynolds 2004; Smith et al, 2008) since the initial reconstruction 

was performed to reduce bias and modeling error.  Figure 2.5 shows the time series for 

the mean SST values from 60° S – 60° N. 
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Figure 2.5  60S -60N ERSST Annual Anomaly (1880 – 2009) 
Downloaded from NCDC website 

(http://www.ncdc.noaa.gov/oa/climate/research/sst/ersstv3.php) 
 
 

Because this data is available to the public through NOAA’s NCDC, it has been 

used in many applications.  A common use of the data has been to use the Empirical 

Orthogonal Function Analysis (EOF – also known as Principle Component Analysis) to 

identify Ocean temperature trends in surface responses (Muñoz and Enfield, 2009).  An 

(2004) used the SST data and EOF analysis to identify trends in the ENSO signal, Tootle 

et al. (2007) used EOF of SST data to run a partial least square regression to create a 

streamflow forecast model, Garcia et al. (2006) used EOF analysis to indentify ocean 

teleconnections between Europe and tropical Atlantic and Pacific SSTs, Girardin et al., 

(2006)  used the SST data and EOF to identify a connection between the ocean climate 

and Canadian drought, and Monahan and Dai, (2004)  sought to understand the nonlinear 

relationships between positive and negative phases of the ENSO signal by using the EOF 

analysis and Pacific Ocean SST data.   

The ERSST data has also been applied to climate questions which are similar to 

those proposed in this research, namely to use the SST data to define covariance 

relationships with other observed data (such as streamflow or precipitation).  Soukup et 
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al. (2010) used Singular Value Decomposition (SVD) analysis on streamflow of upper 

North Platte River Basin (NPRB) and Pacific Ocean SST as well as NPRB streamflow 

and Pacific Ocean sea level pressure (SLP).  This research approach helped identify a 

region of the Pacific Ocean which was not currently represented by other existing ocean 

climate indices to explain a majority of the streamflow variance on the upper NPRB.  

Using the SVD analysis on northern Atlantic Ocean SST and Euro-Atlantic climate, 

Serrano and Rodriguez (2004) identified that the summer-time SST anomalies have a 

lagged effect on North Atlantic Ocean zonal wind as well as precipitation anomalies in 

Europe.   Wang and Ting (2000) identified a covariance relationship between Pacific 

Ocean SST data and winter mean precipitation in the United States. Tootle and Piechota 

(2006) was also able to identify a region of the Pacific Ocean which demonstrated 

significant covariance with observed streamflow across the United States.  This research 

is most similar to that proposed here, because Tootle and Piechota used observations of 

USGS streamflow across the United States and compared them with Pacific and Atlantic 

Ocean SSTs. 

For the proposed research, only the northern Pacific Ocean SSTs will be 

considered similar to research by Aziz et al (2010).  The boundary of the SST data is 

given as 120º East to 80º West and 70º North to 30º South.  This boundary is selected to 

show the entire northern Pacific basin and enough of the southern Pacific to identify any 

connection to the ENSO signal.  This region is displayed in Figure 2.6. 

Geopotential Height is a gravity adjusted elevation about the earth’s surface. The 

adjustment is a function of the change of gravity at a given latitude and elevation in the 

earth’s atmosphere.  The geopotential height values are reported at various pressure 
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levels, and 500mb is simply one of those levels.  Therefore the values used for this 

research are reporting the additional amount of elevation required to “reach” elevation of 

mean sea level.  The geopotential height data are available from the NCEP/NCAR 

Reanalysis Product (Kalnay et al, 1996), and can be downloaded from the following 

website http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html. The 500mb 

height data will identify circulation patterns in the upper layers of the atmosphere (above 

land and sea).  Therefore some studies use the data to identify teleconnection patterns or 

atmospheric waves which demonstrate the path of storm tracks in the atmosphere  (Mo 

and White, 1985; Rogers, 1990; Thompson and Wallace, 1998; Yu, 2007). 

 

 
Figure 2.6  Location Map showing the limits of the SST data.   

(120º E – 80º W, 70º N to 30º S) 
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2.5.2 Geopotential Height 

The utility of geopotential height as a climate variable is summarized by Wallace 

and Gutzler (1981).  Wallace and Gutzler used the data to reproduce these patterns and to 

identify the Pacific/North American (PNA) signal as a teleconnection within the 500mb 

geopotential height data.  It is important to note that it was the sea level pressure data (a 

subset of the geopotential height data) that Sir Gilbert Walker used initially to identify the 

SOI as well as the NAO patterns.  In general this dataset has been utilized so many times 

that there is not enough room to list all of them here. 

There are a few of the studies which relate to the tasks carried out in this research.  

For example, work by Goebbert and Leslie (2010) identified a multi-year cycle present in 

the geopotential height data in the northwest Australian tropical cyclone (TC) area.  This 

analysis showed there is a significant correlation between the wintertime climate variable 

and the yearly TC frequency and the number of TC days each year.  Casola and Wallace 

(2007) showed the wintertime Z500 data is correlated with the ENSO signal in several 

regions around the Pacific Basin and North America.  Finally, work by Blackmon (1976) 

helped set the foundation for using power spectrum analysis on the Z500 data to reveal 

the low frequency signals imbedded in gridded climate data.  These three studies show 

that there is a low frequency cycle to the Z500 data which demonstrates noted 

teleconnection patterns in the Pacific Basin and these have shown the potential for being 

correlated with established climate phenomenon such as the ENSO cycle in the Rocky 

Mountain region. 

2.5.3 Zonal Wind Field 

 The atmospheric water budget is defined by Wang et al., (2010a) as the following. 
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This demonstrates that the zonal wind field is a component of quantifying the 

atmospheric budget.  This zonal wind field, as a component in an atmospheric water 

budget has been used specifically in research to connect the Pacific Ocean climate 

variability to precipitation in the intermountain west (Wang et al., 2009, 2010a, 2010b).  

This work uses both components of the water vapor flux as decomposed by Chen (1985), 

namely the moisture flux streamfunction – a measurement of the amount of moisture 

carried in the atmosphere – and the moisture flux potential. 

The zonal wind field data has been used in studies as a climate variable itself.  

Because it is also part of the NCEP/NCAR reanalysis product there are myriad research 

examples using this data.  The work by Athanasiadis (2010) used the wintertime 250 mb 

zonal wind field to identify the location of the wintertime East Asian Jet Stream (EAJS) 

and its correlation with north American storm tracks.  Yang et al (2002) utilized the zonal 

wind field data to draw between the variations of the EAJS and Asian-Pacific-American 

winter climate.  Zhang et al. (1997a) demonstrated that the presence of high pressures 

over Siberia, and cold surges from east Asia (travelling on a south-southeast direction 

from northern china), have a great effect on the winter monsoon season over East Asia.  

A strong East Asia winter monsoon is characterized by two high-pressure centers: the 
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first is a warm high pressure center whose mid-point is roughly east of Papua New 

Guinea while the other center is a cold “dome adjacent to the Siberian region”.  Between 

the two high pressure centers is the winter traveling path of the East Asian Jet Stream.  

These studies demonstrate that the climate of east Asia has an important connection with 

that of the Pacific Ocean and of North America as well.  Therefore the research should 

identify a connection to the dominant jet stream as well 

2.6 Colorado River Basin Streamflow/Forecast Data  

The final data used in the proposed research are the observed and forecast data for 

the CRB.  The United States Bureau of Reclamation (USBR) maintains a database of 

unimpaired, naturalized runoff data for the Colorado River Basin (CRB) and is available 

for download from the following URL (http://www.usbr.gov/lc/region/ 

g4000/NaturalFlow/current.html).  Streamflow gauges are considered naturalized when 

the effects of human interference (e.g. dams as well as consumptive diversions) have 

been removed mathematically from the gauge measurements.  Unimpaired gauges are 

those which, for all intents and purposes, measure the natural flowrate of the river where 

no man-made impacts affect the measurements.  Impaired gauges measure streamflow 

which are affected by upstream storage or diversions.  In all, there are 29 streamflow 

gauges within the upper and lower CRB which report monthly naturalized or unimpaired 

streamflow volumes from October 1905 thru September 2006.  This particular dataset is 

chosen for this analysis because the USBR uses this data as input into their 24-month 

study, as well as the fact that it is referenced as the baseline for all forecasts of the CRB.  

For example, a given CBRFC seasonal forecast is often reported as a percentage of the 

30-year average (1971-2000) streamflow volume using this data.  However, unlike the 
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SST data, those who manage this dataset do not publish articles regarding the creation of 

the data, therefore there is no tracking done on how many other investigations this data 

has been used.  See Figure 2.7 for locations of the 29 streamflow gauges. 

 

 

Figure 2.7  Location map of 29 USGS streamflow gauges 
 
 

In addition to this data the NWS also maintains a database of unregulated 

streamflow observation data to compare with the published forecasts explained in 

Chapter 1.  “Unregulated” streamflow means that the effect of river storage (e.g. dams) 

has been removed from the river gauge measurements, but the effects of consumptive 

diversions have not.    Therefore, the NWS observations are not the same as those 

included in the naturalized and unimpaired streamflow data provided by the USBR.   
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The online database of unregulated forecasts and observations can be downloaded 

from (http://www.nwrfc.noaa.gov/westernwater/?page=data&id=).   The data include the 

April – July forecasts generated January through July of each year, but not the yearly 

outlooks generated in August and October.  Therefore the “outlook” data will need to be 

obtained from the CBRFC at a future time, after sufficient progress has been made.  Also, 

CBRFC references gauge identifications which are different from the USGS gauge ID 

numbers used in the USBR streamflow data.  However, from the description of the NWS 

and USBR gauges a total of 18 gauges were identified to common between the two 

datasets.   

The proposed work will use only the forecast data obtained for these 18 gauge 

locations to compare the results from the proposed research with the seasonal forecasts 

generated by the NWS.  It should be pointed out that for reasons similar to those with the 

USBR streamflow data, the number of studies using this data is unknown. 

2.7 Summary of Data  

In total there are nine (9) data sets used in the proposed work: 

• NCEP/NCAR Reanalysis Datasets 1948 through present: 

o 500mb Geopotential Height 

o 200mb Zonal Wind Data 

• Southern Oscillation Index (SOI) – 1951 through present 

• Pacific Decadal Oscillation (PDO) – 1900 through present 

• Northern Atlantic Oscillation (NAO) – 1950 through present 

• Atlantic Multidecadal Oscillation (AMO) – 1948 through present 

• Extended reconstructed sea surface temperatures (ERSST v.3): 1854 - present 
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• USBR Naturalized/Unimpaired Streamflow: 1905 – Present for 29 locations 

Because of the common length of records of the existing climate indices, the tasks 

related to the first question will involve data from 1951 – 2004, and compare this with 

observed yearly streamflow volumes from 1952 – 2005.  Extended SVD analysis uses 

streamflow data from 1952 – 2005 to compare with SST data from 1952 – 2005 (0-year 

lag), 1952 – 2004 (1-year lag), 1951 – 2003 (2-year lag), and 1950 – 2002 (3-year lag) 

SST gridded data.  The associated correlation analysis in Chapter 4 uses the gridded 

ocean data for similar lag times.  Finally, and because the ESP is calibrated on the period 

from 1976 – 2005, Chapter 5 will utilize the streamflow data from 1906 – 2005 to 

complete the three different split sample analyses.  This analysis will also require SST 

data from 1904 – 2005. 
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CHAPTER 3 

A BASIS FOR IMPROVING STREAMFLOW FORECASTING OF THE COLORADO 

RIVER BASIN 

3.1 Introduction 

Recent research has provided many tools for the climate scientist to understand 

the connection between sea surface temperatures (SSTs) and sea level pressure (SLP) 

with surface climate over the United States (Latif and Barnett 1994; Hidalgo and Dracup 

2003; McCabe and Dettinger 1999).  Due to the recent drought conditions in the desert 

southwest, much of this research focuses on ways to describe the streamflow of the 

Colorado River basin, by observing large-scale climate observations over the Pacific 

Oceans (Grantz et al. 2005; Kim et al. 2006; Kim et al. 2007).  The well known 

relationships between SST/SLP data and streamflow of the western United States are a 

result of the El Niño Southern Oscillation (ENSO).  However, there are many limitations 

to what information the ENSO can provide water managers of the Colorado River Basin 

(CRB) (McCabe and Dettinger 2002). 

The first limitation is that the effects of the ENSO are most easily correlated with 

surface climate of the northwestern and southwestern areas of the United States.  There is 

a large area covering central California, Nevada, Utah, Colorado and Wyoming which 

does not respond consistently to ENSO variability.  The supposition is at times this 

region is influenced by northerly atmospheric conditions, and at other times southerly 

conditions influence the region. Another limitation to the ENSO is that its effect on 

surface hydrology of the western U.S. has a relatively short lead time.  For instance, 

McCabe and Dettinger (2002) found that fall-winter ENSO observations were correlated 
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with snowpack measurements in the western U.S., and snowpack measurements are well 

correlated with spring runoff (Clark et al. 2001).  Therefore, forecasts generated prior to a 

given water year, or during a non-ENSO cycle year, have a less successful forecasting 

ability of CRB streamflow. 

Currently the National Weather Service’s (NWS) Colorado River Basin River 

Forecast Center (CBRFC) issues three types of forecasts.  These forecasts are then 

employed by the U.S. Bureau of Reclamation (USBR) offices in Denver and Boulder 

City to project the amount of water that will be stored or released from the river for the 

next 24-months.  These forecasts include a 3-month forecast of monthly water volumes, a 

4-month lump sum water volume for the April – July runoff period, and an “outlook” for 

the coming water year.  The 3-month forecasts are generated each month, the April - July 

forecast is issued monthly from January 1 to July 1, and the yearly outlook is issued only 

twice per year - August 1 and October 1. While all of the forecasts are generated using 

the CBRFC's Ensemble Streamflow prediction Software, there is less confidence in the 

water year outlooks due to the lack of research supporting 12-month forecasts,.  (NWS 

CBRFC staff, personal communication, 2008).  

The 24-month projections use the CBRFC's ESP forecasts as the primary input to 

their 24-month projections (referred to by USBR staff as the 24-month study) for the first 

12-months of their analysis.  The second 12-months, or the "out" year, relies upon the 30-

year average (1976-2005) streamflow values to continue their release/storage projections 

(USBR staff, personal communication, 2009). 

One limitation of this method for long-term forecasting is the use of the 30-year 

average monthly data. Using the 30-year average for model calibration assumes a certain 
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amount of climate stationarity, a concept which lately has been challenged in light of 

global climate trends (Milly et al. 2008).  Another limitation of this method is that the 

NWS/NRCS forecast, as well as the 24-month study, are deterministic forecasts.  From a 

practical standpoint, this means that the actual probability of each is not reported 

therefore the quality of the forecast remains unknown. A final limitation is that the 

forecasts created by the ESP view each of the historical inputs as equally likely in the 

current forecast. 

This Chapter proposes that one improvement to generating long-term forecasts 

can be found by weighing the historical input data used by the ESP.  Currently, after the 

ESP generates its forecast traces for the forecast period, certain years can be assigned 

more significance than others based on how similar the forecast year is to the calibrated 

years.  For example, if an El Niño event is taking place during the water year, El Niño 

years from the historical record can be assigned more weight (e.g., Tootle e al., 2009). 

While this post-analysis weighting is sometimes performed, this information is not used 

to generate the official ESP forecast (CBRFC, Personal Communication, 2009).  

However, developing a forecasting approach where the streamflow traces are weighted 

post-analysis, provides a greater promise for implementation since the CBRFC are 

already acquainted with the method.  The key to finding an objective weighting measure 

is to identify a long-lead climate indicator which provides a better indication to changes 

in streamflow than the 30-year mean.  The principle goal of this Chapter is to establish a 

long-lead teleconnection between existing climate indices, or Pacific Ocean SST’s, and 

CRB streamflow.  A physical description of a long-lead teleconnection is the subject of 

Chapter 4, which will be based on the results from the current chapter. 
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Much has been discovered about the connection of observed climate indices with 

the current water year, or two season lag time between the climate and runoff 

measurements (Grantz et al. 2005). This Chapter builds upon recent studies showing the 

correlation of large scale climate index phases and streamflow or snowpack 

measurements in the Colorado River Basin (Tootle et al. 2005; Clark et al. 2001; Werner 

et al. 2004).  Where this study differs from existing work (Timilsena et al, 2007) is that 

measured data will be used to ascertain the effect of large scale climate on 

unimpaired/naturalized CRB streamflow data, as opposed to using tree-ring reconstructed 

streamflow data sets.  Another departure from existing research (e.g. Werner et al 2004) 

is that we will be analyzing the correlation of lead climate indices and the following 

water year's volume over multiple lag times. 

3.2 Data 

There are a total of six (6) data sets used in this analysis:  naturalized streamflow, 

observed monthly Southern Oscillation Index (SOI), monthly Pacific Decadal Oscillation 

(PDO) index, monthly Northern Atlantic Oscillation (NAO) index, monthly Atlantic 

Multidecadal Oscillation (AMO) index, and Sea Surface Temperatures. 

3.2.1 Naturalized Streamflow 

The United States Bureau of Reclamation (USBR) maintains a database of 

naturalized or unimpaired runoff data for the Colorado River Basin (CRB) and is 

available for download from the following URL (http://www.usbr.gov/lc/region/ 

g4000/NaturalFlow/current.html).  Streamflow gauges are considered naturalized when 

the effects of human interference (e.g. dams and diversions) have been removed 

(mathematically) from the gauge measurements.  For the readers reference, there are two 
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other kinds of gauges data: Unimpaired and Impaired. Unimpaired gauges are those 

which, for all intents and purposes, measure the natural flowrate of the river.  Impaired 

gauges measure streamflow which are affected by upstream storage or diversions.  In all, 

there are 29 streamflow gauges within the upper and lower CRB which report naturalized 

streamflow from 1905 water year (October 1905 – September 1906) thru the 2004 water 

year.  This particular dataset is chosen for this analysis because the USBR uses this data 

as input into their 24-month study, as well as the fact that it is referenced as the baseline 

for all forecasts of the CRB.  For example, a given CBRFC seasonal forecast is often 

reported as a percentage of the 30-year average (1971-2000) streamflow volume using 

this data). Figure 3.1 shows a map of the 29 river gauge locations.  

3.2.2 SST and Climate Index Data   

Average monthly SST values were obtained from the National Climatic Data 

Center (http://www.cdc.noaa.gov/cdc/data.noaa.ersst.html). The data is presented in 2º x 

2º grid cell for all oceans (Smith and Reynolds, 2003; Smith et al., 2008) and spans the 

years from 1846 until present.  Though the dataset is a reconstruction of SST values for 

the period, data quality improves from 1950 on as a result of increase coverage ocean 

monitoring capability.  The range of ocean data used in this study covers the area from 

Longitudes 120º East to 80º West and Latitudes 20º South to 60º North, which is similar 

to the region studied by Tootle et al. (2006). 

Climate index data can be found through the National Oceanic Atmospheric 

Administration’s (NOAA) Climate Prediction Center (CPC) website.  These indices have 

been used previously to demonstrate a correlation between the changes in the index and 

surface climate changes (Tootle et al. 2005; Shabbar et al. 1997; Rasmussen & Wallace,  
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Figure 3.1  Location map of 29 USGS streamflow gauges 
 
 

1983; McCabe et al. 2007). The availability of continuous data for each index as well as 

for the streamflow data defines the study period.  The SOI data 

{http://www.cpc.ncep.noaa.gov/data/indices/soi} covers monthly standardized values 

from 1951 thru 2008 (calendar years).  PDO index values are available from 1900 

through the current year (http://jisao.washington.edu/ pdo/PDO.latest).  In addition to 

these data sets, the available NAO {http://www.cdc.noaa.gov/Correlation/nao.data} and 

AMO {http://www.cdc.noaa.gov/Correlation/amon.us.data} index values is available 

from 1950 and 1948 respectively, until the current year.  Based on the data availability, 

the study period will start in 1951 and end with the 2005 water year. 
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3.3 Methodology 

 The correlation between the climate variability and SST with the gauge 

streamflow was completed using two statistical methods.  The first test is the Rank Sum 

Test.  This test is used to compare mean values from two different datasets to determine 

if they are significantly different.  The second test is the Singular Value Decomposition 

(SVD) method of finding maximum covariance between two fields.  SVD was used to 

compare the SST data with the streamflow data.  

3.3.1 Rank Sum Analysis  

 The rank sum test is an excellent way to test a “before” and “after” scenario 

without trying to determine if either data set has a defined distribution. Alternatively, it 

can be used to test for differences between two segmented data sets. Hence, this is a non-

parametric test and does not make assumptions about the distributions of either dataset. In 

the current analysis, we are using the negative and positive phases of the indices to act as 

our “before” and “after conditions respectively.  The mean of the streamflow measured 

during a negative climate phase is compared with the mean streamflow measured during 

the positive climate phase.  The null hypothesis of this test is that the means from the two 

sample sets are equal.  The results of a rank sum test provide a value of the probability 

that the two sets are similar.  For p-values less than 0.05, the null hypothesis was rejected 

a theoretical discussion of this test is offered by Alder and Roessler (1977).  

In order to determine the effect that the SOI has on CRB streamflow the 3-month 

and 6-month average SOI values were used to separate the historical streamflow data into 

“positive” and “negative” groups.  Figure 3.2 shows an overview of how the rank sum 

test uses the historical index values to compare the positive and negative streamflow  
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Figure 3.2  Depiction of 3-month and 6-month lag-lead analysis 
(Qi = yearly total runoff measured at station i) 

 

phase groups.  Starting with July, August and September average SOI values (lag = 0), 

the streamflow values from years where this monthly interval is positive were grouped 

and compared with those streamflow values corresponding to negative SOI values.  This 

test was performed for the measured streamflow values from each station.  After each 

station was compared for the JAS average of SOI values, then the three month SOI 

interval was lagged back one month (Lag 1 – June, July and August) and the analysis was 

performed again at all measurement stations.  The analysis process was repeated until 

Lag 9 (average of October, November and December SOI values).  We repeated the 3-
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month average rank sum test for the PDO (index No. 2), NAO (No. 3), and AMO (No. 4) 

indices, which provided a total of 1,160 results (29 stations x 10 lags x 4 indices).  

Similarly we performed the same process for the 6-month average values starting with 

the April-September interval (AMJJAS; lag = 0) and ending with the October-March 

interval (ONDJFM; lag = 6) (see Figure 3.2).  The 6-month analysis consisted of an 

additional 812 rank sum tests (29 stations x 7 lags x 4 indices). 

3.3.2 Combination of Indices  

The next step in the analysis was to compare the combined effect of the indices 

assuming that the influence from different climatic phenomena can occur at the same 

time.  The process used to determine the effect of an individual climate index was 

repeated for the combination analysis.  This process is shown graphically in Figure 3.3.  

Using the SOI as a base, the combination analysis compared the PDO-positive and PDO-

negative values which also occur under an SOI-positive phase (Labeled as analysis No. 

5).  Likewise, the process was repeated for PDO-positive vs. PDO-negative values under 

the SOI-negative phase (analysis No. 8).  The SOI-PDO combination of 3-month and 6-

month average values included an additional 986 rank sum tests (29 stations x 10 lags x 2 

combination phases + 29 x 7 x 2).  In a similar manner, the NAO (analysis No. 6 & 9) 

and AMO values (analysis No. 7 & 10), were also completed for the 3- month and 6- 

month values.  Therefore the combination analyses yielded a total of 2958 results (986 x 

3 indices). 
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Figure 3.3  Combination rank sum testing using the SOI as a basin 
 
 

3.3.3 SVD Analysis of Pacific Ocean SSTs 

The next step in the analysis process was to determine how Pacific Ocean sea 

surface temperatures vary with respect to the streamflow measured in the 29 gauges of 

the CRB.  The goal of this analysis was to determine if there is any SST pattern that can 

be identified, which is not already represented in one of the indices used in the rank sum 

testing.  The process is also known as Maximum Covariance Analysis, because the goal 

is to identify the dimensions, or modes, which represent the maximum amount of 

covariance between two temporal fields.  Since the spatial component of most climate 

data is quite large, using the temporal field to compare generally limits the analysis 

dimension to the number of days, months, or years included in the study period.  In this 

paper our time scale is in years. 

The use of SVD to find couple patterns in climate data was explored by 

Bretherton et al. (1992) who compared five different methods for analyzing climate data.  

Other research (Wallace and Bretherton 1992;  Soukup et al. 2010) has utilized SVD to 

analyze the covariance of sea level pressure as well as SST with snow water equivalent 

measurements, precipitation, and, as we do here, with streamflow.  The process 

performed in this analysis is similar to Tootle and Piechota (2006), where SST anomalies 
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in the Pacific Ocean are coupled with streamflow anomalies across the United States.  In 

this paper we limit the analysis to the CRB streamflow only. 

The following description of the SVD process is provided by several sources 

(Bretherton et al. 1992; Wallace et al. 1992).  Before any computations were performed, 

the raw SST and Streamflow data were standardized based upon each grid location and 

the values representing land (values of -9999) were deleted from the SST matrix.  Next, a 

covariance matrix using the SST and Streamflow anomalies was determined using the 

following formula: 

COVARTS = (1/n) (T'S) 

In this analysis, the number of years in the temporal analysis is, n = 53.  The SST field 

[53 x 3218] was represented by the letter, T, and S represents the streamflow data field 

[29 x 53].  The SVD was performed on the COVARTS matrix [3218 x 29] which yielded 

the following three matrices: 

SVD(COVARTS) = U Σ V 

U [3218 x k] and V [29 x k] represent the left and right singular (heterogeneous) matrices 

respectively, and Σ [53 x 29] represents the diagonal matrix of singular values from the 

SVD.  The value k, represents all modes (columns in the matrix) which contain a squared 

covariance fraction (SCF) > 10%.  SVD (similar to the results from a PCA/EOF analysis) 

attempts to describe the variance of a given matrix (in this case, the COVARTS matrix) by 

drawing new axes which are rotated in matrix space to capture as much of the variance 

(in essence, changes in SST or streamflow) as possible.    Each column of the U and V 

represents a new axis and the values in those columns represent the variance captured by 

that axis.  In order to measure the proportion of variance contained within a given 



www.manaraa.com

55 

column, Bretherton et al. (1992), used the squared covariance fraction (SCF).  The SCF is 

found by dividing the square of each singular value in the Σ matrix by the sum of the 

squared singular values (sum of squared values from the diagonal) as is shown by the 

following equation: 

2
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i i

i i

i
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  In this equation S represents the matrix of singular values Σ (substituted to avoid 

confusion with the summation sign in the denominator), and the summation is taken for 

values of i from 1 to 29 because this is the total number of columns of Σ. 

Finally, the left and right temporal expansion series (LTES & RTES) were 

obtained by projecting U onto T and V onto S in the following manner: 

LTES = U’ T’ 

RTES = V’ S’ 

The LTES [53 x k] and RTES [53 x k] expansion series are both time series representing 

the maximum yearly variance of the SST data.  The LTES is then standardized to reflect 

the unit increments of variance.  In this format the LTES can now be used in the same 

way that the climate indices were used to test correlation with the streamflow in the rank 

sum test.  The LTES is run through the lagged correlation testing outlined above, just like 

the testing approach to the established climate indices. 

 The final step in the analysis was to determine the significance of the variance 

observed in the left heterogeneous field (SST) and the right heterogeneous field 

(streamflow), by calculating the Pearson-r correlation coefficient.  The testing for 

significance was done using a student t-test, which assumes that the correlation 
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coefficients are normally distributed with a mean value of r = 0.  Working backwards, 

starting with n – 2 degrees of freedom (i.e. 51), we find that |r| ≥ 0.27 in order to be 

significant.  This value is based on α = 0.05. 

3.3.4 Forecast Skill Comparison 

 The final analysis proposed in this chapter is used to compare the forecast skill 

abilities up to three climate indices at a time.  In contrast to the Rank sum analysis, which 

provides an assessment of significant dissimilarities between streamflow observed under 

the positive and negative phases of a given index, the forecast skill score will calculate a 

value which represents the magnitude of contribution that a given index makes to a given 

forecast model.  The comparison between the three indices was completed using a model 

initially developed by Piechota et al (1998) who were trying to develop long lead-time 

forecasts of streamflow in Eastern Australia. A detailed explanation of the method is 

provided in Piechota et al (1998) and in other more recent research (Tootle and Piechota, 

2004; Soukup et al, 2010).  A brief explanation is provided here. 

 A probability density function is created using a kernel density estimator and a 

sorted vector of observed streamflows at a given location.  For each observed streamflow 

a unique probability value is obtained using a given predictor (SOI, PDO, and so forth).  

The streamflow/probability data pairs are then plotted to create a probability exceedance 

curve for each predictor.  The three exceedance curves are combined to create a 

composite exceedance curve which is the basis for the forecast model.  This new forecast 

model calculates weights a, b, and c which are applied to the appropriate predictors to 

optimize the forecast model’s linear error in probability space (LEPS) score.  The LEPS 

score was initially developed by Ward and Folland (1991) and subsequently revised by 
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Potts et al (1996).  The revised LEPS score is used here since the formula proposed by 

Potts et al. gives a higher score to forecasts of extreme values than to forecasts closer to 

the observe mean. 

3.4 Results 

There is one limitation to the rank sum test and its significant results.  In the 

current analysis there are a total of 11 climate indices (four climate indices, six 

combinations of the same, and the LTES) which yielded a total of 5,423 rank sum test 

results.  Of these tests there were a total of 828 significant test results.  Based on the 

chosen α for our analysis, 272 of the significant results (5,423 x 0.05) have a probability 

of representing Type I errors.  In other words, approximately 1/3 of the significant results 

can come back as false positives.  To address this issue, the total number of successful 

results at each streamflow gauge station was ranked according to the p-value resulting 

from the Rank Sum test.  P-values close to 0.05 have the highest chance of a Type I error, 

so only the two lowest p-values at each station were reported. 

3.4.1 Climate Indices 

Figure 3.4 shows the total number of successful results from each climate input.  

By far, the most successful index input to the rank sum test is the LTES. In fact, the Jan-

Feb-Mar LTES rank sum test resulted in significant results at all 29 stations.  It is also 

interesting to point out that the next largest number of successful results came from the 

NAO and the AMO index tests. As the analysis lag increased so did the number of 

successful results attributed to the AMO.  Table 3.1 shows the top two index inputs at 

each gauge location.  The SST index references in Figure 3.4 is the LTES resulting from 

the SST-Streamflow SVD analysis for the given interval length and lag number.   
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USGS  
Sta. No 

 
Index / Avg Month Interval / Lag 

  USGS  
Sta. No. 

 
Index / Avg Month Interval / Lag 

09072500  [1] SST / 3 / 8 [2] NAO / 3 / 3   09315000  [1] SST / 3 / 6 [2] SP(p) / 3 / 9 

09095500  [1] NAO / 3 / 3 [2] SST / 3 / 8   09328500  [1] SST / 3 / 9 [2] NAO / 3 / 3 

09109000  [1] SST / 3 / 8 [2] SN(n) / 3 / 2   09355500  [1] SN(n) / 3 / 2 [2] AMO / 3 / 8 

09124700  [1] SN(n) / 3 / 2 [2] NAO / 3 / 3   09379500  [1] SST / 3 / 9 [2] SN(n) / 3 / 2 

09127800  [1] SN(n) / 3 / 2 [2] NAO / 3 / 3   09380000  [1] SST / 3 / 6 [2] NAO / 3 / 3 

09152500  [1] SST / 3 / 6 [2] AMO / 3 / 8   09382000  [1] SST / 3 / 7 [2] SOI / 6 / 2 

09180000  [1] SST / 3 / 9 [2] AMO / 3 / 8   
09402000 

 
[1] SST / 3 / 0 [2] AMO / 3 / 9 

09180500  [1] SST / 3 / 6 [2] NAO / 3 / 3   
09402500 

 
[1] SST / 3 / 6 [2] NAO / 3 / 3 

09211200  [1] SP(p) / 3 / 9 [2] SOI / 6 / 6   
09415000 

 
[1] SST / 3 / 9 [2] SOI / 3 / 5 

09217000  [1] SP(p) / 3 / 9 [2] SST / 3 / 6   
09421500 

 
[1] SST / 3 / 6 [2] AMO / 3 / 8 

09234500  [1] SP(p) / 3 / 9 [2] SST / 3 / 6   
09423000 

 
[1] SST / 3 / 6 [2] AMO / 3 / 8 

09251000  [1] SST / 3 / 8 [2] NAO / 3 / 3   
09426000 

 
[1] SST / 3 / 0 [2] SOI / 3 / 8 

09260000  [1] SST / 3 / 6 [2] SP(p) / 3 / 9   
09427520 

 
[1] SST / 3 / 6 [2] AMO / 3 / 8 

09302000  [1] SST / 3 / 6 [2] SN(n) / 3 / 2   
09429490 

 
[1] SST / 3 / 6 [2] NAO / 3 / 3 

09306500  [1] NAO / 3 / 3 [2] SST / 3 / 6         

 
Table 3.1  Top Two Significant Rank Sum Test Results at Each Station. 

SP(p) = PDO-pos vs. PDO-neg. under the SOI-neg. phase. SN(n) = NAO-pos vs. NAO-

neg. under the SOI-neg. phase. SA(n) = AMO-pos vs. AMO-neg. under the SOI-neg. 

phase. Italicized cells denote lower CRB gauges. 

 

These simple observations are not enough to draw hard conclusions, but they do 

identify additional questions: Why are the NAO and AMO out performing the SOI and 

the PDO?  Why are the Pacific Ocean SSTs performing so well when the SOI and the 

PDO are not? 

The answer to the first question is that this research confirms previous research in 

related areas.  Firstly, McCabe et al. (2007) analyzed the effects of the Northern Atlantic, 
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Northern Pacific, Tropical Pacific, and the Indian Ocean regions on streamflow in the 

Upper CRB.  While our methods to determine a long-term correlation differ, McCabe et  

al. (2007) was able to show that while all SST input values were teleconnected to 

streamflow anomalies in the CRB, a PCA analysis showed that the AMO mode 

represented more of the variance than the PDO or Indian Ocean SST data.  Secondly, 

researchers (McCabe and Dettinger 2002) have identified that SOI, NINO3, PDO and the 

Pacific/Northern America (PNA) circulations have weak correlations to streamflow in the 

upper CRB.  Those who have observed this suppose that the typical climate of the Upper 

CRB is not completely similar to either the northwestern or southwestern United States 

and therefore does not maintain the same consistent correlation signal with the tropical 

Pacific Ocean data. 

 

 
Figure 3.4  Number of significant results of the rank sum test  
based on climate input recorded across the basin (α = 0.05) 

 
 

As a result of the poor signal response Grantz et al. (2005) developed basin-

specific climate indicators as suggested by Yernall and Diaz (1986) .  If the established 

climate indices are not sufficient to determine strong correlation, then it is worth 
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evaluating whether other regions of the Pacific may serve as predictors. It is along this 

line of reasoning that the second question was explored: why does the temporal 

expansion series from the SVD analysis outperform the established climate indices? 

3.4.2 Pacific Ocean SSTs 

 The SVD analysis provides a number of maps which provide a helpful amount of 

information about what might be a basin-specific climate index (See Figures 3.5 and 3.6).  

These figures are generated by plotting the significant correlation coefficients of the left 

(SST) and right (streamflow) heterogeneous matrices.  Starting at lag = 0 (Jul-Aug-Sep & 

Apr-May-Jun-Jul-Aug-Sep) there is a visible signal from the ENSO region of the Pacific 

which diminishes as the lag number increases.  Conversely, as the lag number increases, 

another area located east and south of Japan begins to grow until reaching its maximum 

size around lag = 6 for the 3-month average interval, and lag = 4 for the 6-month 

interval).  The difference in sign between the ocean area east of Japan and the streamflow 

gauges shows that they are negatively correlated: as one is increasing, the other is 

decreasing. 

It is interesting to observe that the region in question is anchored over an area that 

this paper defines as 150 E to 200 E (160 W) and from 24 N to 34 N.  This particular area 

is south and west of the area which is associated with the northern Pacific signals of the 

PDO as identified by Mantua and Hare (2002).  However, this area is not original to the 

current research as it has been identified in other research without being specifically  



www.manaraa.com

61 

 

Figure 3.5  6-month left and right heterogeneous correlation maps (|r| ≥ 0.27) 
plotted from 6-Month Average SST data, from Lag 0 to Lag 6.  SCF values displayed for 

first mode. 
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Figure 3.6  3-month left and right heterogeneous correlation maps (|r| ≥ 0.27) 
plotted from 3-Month Average SST data, from Lag 0 to Lag 9.  SCF values displayed for 

first mode. 
 
 

acknowledged or defined Wang and Ting. 2000; Tootle and Piechota 2006; Soukup et al. 

2010). Work by Rajagopalan and Lall identified a similar pattern using the Kaplan SST 

data which is organized at 5º spacing.  Because the area is located adjacent to Japan, this 

paper refers to this area as the Hondo region.  Hondo is a Japanese word for “main road” 

or “highway”.  In Spanish, hondo is an adjective meaning “deep”, and it is most 

commonly used when referring to water.  Since the word is used in two languages which 
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are geographically relevant to the research at hand and its meanings are relevant to the 

research, this region of the ocean lends itself to this designation. 

The success of the LTES as an index can be explained through the way in which it 

is created and how it can be used.  Since the LTES is the projection of the SST variance 

onto the normalized raw SST data, the result is a vector which represents the scaled SST 

variance within the given 3-month (or 6-month) interval of time selected for the analysis.  

For all but three of the analysis periods (3-month, lags 0 and 1, as well as 6-month lag 0), 

the overwhelming majority of the variance could be explained by the first mode, and is 

therefore captured as part of the LTES. We hypothesize that this is because the influence 

of other climate indices is stronger during these periods than the rest of the year. The 

LTES may seem less ideal to use because it is not simply the standardized SST values of 

the Hondo region (similar to the PDO, or AMO). As already shown the LTES is the 

product of the SST and Streamflow data.  Which creates another question:  How do you 

create a forecast with a model that requires the forecast point in order to be created? We 

do not propose to answer this question here.  However, since the Hondo region is 

identified by an SVD analysis it is best to continue discussing the SST-streamflow 

connection in terms of the SVD output (in essence, the left temporal expansion series).  

The teleconnection between the SSTs of the western pacific and the streamflow 

may be explained from the perspective of the East Asian Jet Stream (EAJS).  Zhang et al. 

(1997a) demonstrated that the presence of high pressures over Siberia, and cold surges 

from east Asia (travelling on a south-southeast direction from northern china), have a 

great effect on the winter monsoon season over East Asia.  A strong East Asia winter 

monsoon is characterized by two high-pressure centers: the first is a warm high pressure 
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center whose mid-point is roughly east of Papua New Guinea while the other center is a 

cold “dome adjacent to the Siberian region”.  Between the two high pressure centers is 

the winter traveling path of the East Asian Jet Stream.  

Athanasiadis et al (2010), show that the Hondo region is actually the terminus of 

the EAJS (Asian/Pacific Jet).  By completing an EOF (i.e. PCA) of the average 

wintertime (Dec-Mar) wind field over the northern hemisphere, this study identified the 

path of the dominant Asian/Pacific jet.  Figure 4 of Athanasiadis et al. (2010) is of special 

note because it displays the dominant wintertime jet (shown in a heavy black line) based 

on the EOF analysis superimposed upon the teleconnectivity of the 250hPa zonal wind 

and the 500hPa geopotential height fields (Wallace and Gutzler, 1981, define 

teleconnectivity as the absolute value of the strongest negative correlation between a grid 

point and any other grid point).  This figure shows that the terminus of the Asian/Pacific 

Jet is approximately 150 W, and between 30 N and 35 N.  This coincides fairly well with 

the eastern boundary of the Hondo Region. Athanasiadis et al continue to show that while 

the first mode of the Asian/Pacific jet EOF is closely correlated with the Pacific/North 

American (PNA) index, the second mode is not identified as being tied to a specific 

index.  However, it is the second mode which determines the location of the 

Asian/Pacific Jet (and therefore the EAJS) and the storm track that encroaches on the 

west coast of North America.  It is the second mode of the teleconnectivity patterns 

which approximate the location of the Hondo region the best.  

Yang et al. (2002) identified the consistency at which the EAJS crosses the 

southern Japanese island of Kyūshū and enters the Hondo region.  Yang et al. further 

identified that as the position of the EAJS changes, there are corresponding changes in 
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SSTs over the eastern Pacific Ocean and western North America.  During the strong 

winter monsoon events, Zhang et al. (1997a) showed that the surface wind patterns show 

that the EAJS “bifurcates” shortly after exiting the Hondo region.  A portion of the flow 

pattern turns southeast and enters the path of the jet stream.  The other portion is diverted 

north and joins the Aleutian low.  Both air streams ultimately cross into the western 

United States thereafter. 

We hypothesize that the EAJS is the vehicle by which strong Monsoonal moisture 

is carried from East Asia to western North America.  Incidentally, Sun and Sun (as cited 

in Zhang et al. 1997b) propose that a strong winter monsoon usually precedes a drought 

summer season in East Asia.  We hypothesize that operating in such conditions, moisture, 

which normally would remain in East Asia is carried by the bifurcated wind flow toward 

North America.  The northerly flow path carries some of the moisture to the western 

United States where it is deposited as snowfall within the CRB (Aziz et al., 2010). 

3.4.3 Forecast Skill Comparison Results 

 After the SVD and Rank Sum testing is complete, a Hondo index is defined as the 

LTES of the SVD analysis and then compared to the SOI and PDO index.  While the use 

of indices (e.g., SOI, PDO) may result in skillful long lead-time forecasts of streamflow, 

some streamflow regions may not be teleconnected to established climate signals and, 

thus, would result in less than skillful forecasts when using such indices. A distinct 

advantage of applying SVD to SST and streamflow regions is the possible identification 

of a new SST region that, when used in a forecast model, results in a skillful streamflow 

forecast. 
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 The Forecast Skill Comparison method described earlier was employed using the 

SOI, the PDO, and the SST LTES (taken from the JFM SVD analysis) as the third 

predictor.  Figure 3.7 displays the results from this analysis.  At this lag time, the analysis 

shows that the SOI and the PDO result in negative forecast skill values (i.e. their 

forecasts are less accurate than the observed mean).  On the other hand the SST LTES 

provided an improvement to the forecast skill over the observed mean demonstrating the 

potential for the new region of the ocean to be used as a forecasting tool. 

 

 
Figure 3.7  Plots showing contribution of index to forecast skill.   

Value of ‘0’ is a forecast as good as the mean. 
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3.5 Conclusion 

 The goal of this analysis was to find which climate data, combination of climate 

data, and lead time could be used to increase the skill of forecasting streamflow on the 

first day of the following water year. The rank sum testing from this research identified at 

least two different climate inputs for every river gauge in the CRB.  For each of the 29 

river gauges, there was a significant correlation with an established climate index.  

However, when comparing the number of successful tests from the different climate 

inputs, the SST data was more consistent at providing significant results. 

Further testing using SVD showed that a long-term correlation exists between the 

SST anomalies and streamflow anomalies for the Colorado River Basin.  SVD testing of 

3-month averaged SST data, showed that a region bounded by 150 E to 160 W and 24 N 

to 34 N, named here as the Hondo region, demonstrates a significant amount of 

covariance with the streamflow measured over the following water year.  As already 

mentioned, the significance of this region has been demonstrated in other research.  The 

success of the Hondo region lays in the strength and consistency of the Asian winter 

monsoon, and the effectiveness of the East Asian Jet Stream to transport the moisture 

across the Pacific Ocean. 

The results obtained in this research demonstrate the potential to generate long-

lead forecasts of CRB streamflow from SST values observed over the Hondo region in 

the Pacific Ocean.  Therefore, the next steps include identifying a forecast approach 

which utilizes the climate CRB-streamflow connection observed here. The new work 

should include a variety of input alternatives to determine the simplest and most effective 

forecasting model for the entire water year, or simply the seasonal runoff (April – July). 



www.manaraa.com

68 

CHAPTER 4 

CONNECTING THE PACIFIC OCEAN TO THE COLORADO RIVER BASIN 

4.0 Introduction 

In recent years there has been increased interest to identify climate-hydrology 

response relationships using the gridded global data such as sea surface temperature 

(SST), pressure or zonal wind field data rather than looking to the established climate 

indices, defined by a subset of the global data, such as the El Niño Southern Oscillation 

(ENSO) or the Pacific Decadal Oscillation (PDO).  The typical application of the global 

gridded data is to identify covariance relationships between regions of the oceans and 

surface hydrology such as precipitation, snowpack, and streamflow (Wang and Ting, 

2000; Serrano and Rodriguez, 2004; Tootle et al., 2006; Haylock, 2007; Santos et al., 

2007; Yuan and Li, 2008; Apipattanavis et al., 2009; Soukup et al., 2010; Wu et al., 2009, 

Wang et al., 2010a). 

The research presented here builds upon Lamb et al (2010) and Aziz et al. (2009) 

(hereafter referred to as L10 and A10 respectively) which shows there is an area of the 

Pacific Ocean (150E - 200E, 34N - 24N – hereafter referred to as Hondo) which 

demonstrates a significant correlation with streamflow in the Colorado River Basin 

(CRB).  Both (L10) and (A10) identified this region using a singular value decomposition 

(SVD) analysis approach.  In both cases the Hondo region was identified by isolating the 

areas whose correlation coefficients exceeded a 95% significance level.  Results in (L10) 

reveal the Hondo region as significant when comparing the winter time SST’s from a 

given water year, with the total yearly streamflow of the following water year.  Similarly 

(A10) identifies the Hondo region when correlating Pacific SSTs with snow water 
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equivalent (SWE) data from SNOTEL stations located throughout the U.S. Rocky 

Mountains, also at a year’s lag time. 

The existing research has left several questions to be answered regarding the 

Hondo-CRB teleconnection.  For example, because the studies L10 & A10 only looked at 

comparing SST with the streamflow/SWE for the following water year, there is a need to 

understand how persistent the Hondo effects are noticed in the CRB.  In other words, do 

the Hondo effects appear when climate data are compared with streamflow responses 

from the same water year, as well as at lead times of more than one water year?  

Additionally, since SST’s and streamflow are independent variables and are far apart, 

what is the mechanism connecting the two?   

The proposed research has two major tasks:  First, the SVD analysis performed in 

previous papers (L10 & A10) will be extended to include 4 years of SVD analysis: 

simultaneous response year, and the three years leading up to it.  This extended SVD 

analysis is expected to identify the extent to which the Hondo effects the CRB.  Second, 

the SVD analysis will be applied to atmospheric datasets (such as geopotential height 

(500mb) and zonal wind (200mb) to delineate dynamical responses to the SST-

streamflow relationship identified in the SVD analysis.  The hypothesis is that if there is a 

long-lead physical connection between the Hondo and the CRB streamflow, then the 

Hondo-CRB teleconnection will appear in the other atmospheric datasets at similar lag 

times. The goal of this work is to improve the understanding of the climate drivers for the 

CRB in order to develop an improved long-lead forecasting technique.  
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4.1 Data 

4.1.1 Streamflow Data 

The US Bureau of Reclamation (USBR) maintains a spreadsheet of naturalized 

streamflow data for 29 gauges within the CRB which can be obtained from the following 

URL (http://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html).  Since a given 

water year actually begins and ends in different calendar years, when this report refers to 

a given water year (for example, 1996) it is signifies the period October 1, 1995 through 

September 30, 1996.  Therefore when the total yearly streamflow of a given water year is 

shown, this is referring to the total water volume observed at a given gauge from October 

1 through September 30 of the specified water year.  In order to maintain some continuity 

between the previous and current work, this data set is used here because it was used in 

(L10). The 29 locations are displayed in Figure 4.1. 

The SST data comes from work provided by Smith et al (2008) and can be 

downloaded from the National Oceanic and Atmospheric Administration (NOAA) 

National Climate Data Center (NCDC) website (http://www.ncdc.noaa.gov/oa/climate/ 

research/sst/ersstv3.php).  The SST data are displayed at a 2˚ square grid spacing, and 

were converted into text files using software, named Ocean Temperature Analysis 

(OTA), developed at UNLV specifically for this purpose.  Apart from the works of Aziz 

et al., and Lamb et al. this particular SST data has been used in previous works to identify 

a connection between ocean activity and the response in western U.S. streamflow (Tootle 

and Piechota, 2006; Tootle et al, 2007; Soukup et al. 2010). 
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Figure 4.1  Location map of 29 USGS streamflow gauges 
 
 
 

4.1.2 Climate Data  

The 500mb geopotential height (Z500) and 200mb zonal wind field (U200), are 

obtained from the NCEP/NCAR reanalysis product (Kalnay et al, 1996) available for 

download at http://www.esrl.noaa.gov/psd/.  The data for the variables listed covers the 

entire globe at 2.5º square grid spacing.  For this analysis, only the northern Pacific 

Ocean region will be used, (in essence, 120E – 80W and 70 N to the equator (0). Since its 

inception the reanalysis product has been used in thousands of applications to provide a 

better understanding of global circulation patterns (Roundy and Gribble-Verhagen 2010; 

Roundy et al. 2010; Pauluis et al. 2010; Grise et al. 2010), or to improve the 
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understanding of the connection between global climate and associated responses in 

hydrologic phenomena (Wang et al., 2010a; Johnstone 2010; Johnstone 2010; Zhao et al. 

2009; Patricola and Cook 2009; Fu et al, 2009; Adam et al, 2009) More relevant to the 

current research, there are some recent examples of how this data is used to improve the 

understanding of climate impacts on the CRB and closely related areas.  Lundquist and 

Flint (2006) used the data in order to identify reason for the early snowmelt-streamflow 

runoff season in the Sierra Nevada Mountains observed in 2004.  A study by Gochis et al. 

(2007) looked at the North American Monsoon and its lagged correlation relationship 

with Pacific and Caribbean Ocean SSTs.  Bracken et al (2010) utilized the global dataset 

to identify potential predictors of streamflow within the CRB.  The studies not only 

demonstrate the applicability of this data, but the utility of using these data as opposed to 

another dataset. 

4.2 Methodology 

In (L10), the SVD analysis was performed using 3-month average SST values 

from July – September and the observed streamflow volume generated during the 

following water year (October 1 – September 30).  This analysis was repeated for June – 

August average SST values (Lag = 1 Month), for May – July (Lag = 2 Months), and so 

forth until the average SST values from October – December (Lag = 9 Months) was 

compared with the water volume from following water year. 

In the research presented here the analysis includes comparing SST values and 

streamflow values with a 0-year lag (simultaneous response year), as well as at 1-, 2- and 

3-year lag times, essentially reproducing some of the work provided in Lamb et al (2010), 

but adding additional lag times.  Figure 4.2 demonstrates the progression of the lagged  
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SVD analysis.  However, due to the large number of correlation maps, only the July – 

September (JAS), April – June (AMJ), January – March (JFM), and October – December 

(OND) intervals will be displayed here. 

 

 
Figure 4.2  Lagged analysis schematic 

 
 
 

The SVD analysis itself has been used in many applications when comparing the 

behavior of two datasets (Prohaska, 1976; Bretherton et al. 1992; Wallace et al. 1992).  

The method is described in detail in (L10).  The purpose of the method is to identify 

locations in the ocean and streamflow data that are significantly correlated to the 

principle components identified in the SVD analysis.  If the squared covariance fraction 

(i.e. the percentage of variance explained by a given mode) of the principle component is 

greater than 10%, then it is used in the correlation analysis.  A 95% confidence level is 

set to determine if the calculated correlation value is occurring by chance.  Because the 

CRB is a relatively small area, it is expected that the vast majority of the variance will be 

explained by the first mode of the SVD analysis. 

The purpose of this analysis is to identify the extent of the impact the Hondo has 

on the CRB streamflow.  It is expected that this analysis will show the Hondo as non-

significant in the 0-year lag because of the noise created by extreme ENSO cycles.  It is 
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also expected that the strongest connection will be with the one-year lag, and then a 

diminishing connection as the lagged analysis increases into the second and third years. 

In addition to providing an extended SST-Streamflow SVD analysis (SST-SVD), 

the current research proposes to utilize the extended SVD results to identify the 

correlation with Z500 and U200 datasets.  These correlation analyses use the streamflow 

temporal expansion series that is calculated as part of the SVD analysis.  While a detailed 

description of this calculation is provided in L10, a brief explanation of how the temporal 

expansion series is determined is provided here.  The SVD on the SST – Streamflow 

covariance matrix gives three matrices [SVD(covarTS) = U Σ V], where V represents the 

decomposed covariance values closely associated with the streamflow.  Therefore, given 

the decomposed matrix, V, and the original matrix of streamflow anomalies, S, the 

streamflow temporal expansion series (STES) is determined by the following equation:  

STES = V’S’.  The result of this calculation is a series of values, one for each time period 

in V and S.  The STES is then correlated with cell of the Z500 and U200 gridded data so 

that the correlation responses portray possible circulation anomalies linking SSTs to CRB 

streamflow.  

4.3 Analysis Results 

4.3.1 Extended SVD Results 

Extended SVD analysis results are displayed in Figures 4.3 and 4.4.  Figures 4.3(a) and 

(b) show the SST-SVD results from the simultaneous response year, and the 1-year lag 

time respectively.  Figures 4.4(a) and (b) show the results from the 2-year and 3-year lag  
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Figure 4.3  0-year and 1-year lag correlation maps from SVD analysis 

Figure (a) shows the correlation maps (α = 0.05) for the simultaneous response year and 
(b) 1-year lag.  Red SST regions/Streamflow gauges show increasing temperatures and 
streamflow, while blue shows decreasing temperatures and streamflow.  The Hondo is 

shown as dashed rectangle. 
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Figure 4.4  2-year and 3-year lag correlation maps from SVD analysis 

Same as Figure 3, but showing the (a) 2-year lag and the (b) 3-year lag times. 
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times.  The "SCF" values labeled on each map represent the squared covariance fraction 

for the mapped, SVD analysis mode.  A black dashed line shows the limits of the Hondo 

Region as defined by L10 and A10. 

 These figures display regions of the Pacific Ocean that are linked to streamflow 

gauges in the CRB.  Red/Blue regions of the Pacific Ocean denote increasing/decreasing  

temperature teleconnections.  Similarly, up-oriented red triangles and down-oriented blue 

triangles represent increasing or decreasing streamflow teleconnections respectively.  If 

the significant region of the ocean and a streamflow gauge have the same color, then this 

denotes a positive correlation relationship. If the SST and streamflow regions have 

opposite colors then this displays a negative correlation relationship.  If the maps display 

a region of cool SSTs correlated with increasing streamflow, then we can also say that 

warm SSTs over the same region will be associated with decreasing streamflow gauges. 

 During the simultaneous response year analysis, one notices that depending on the 

time of year, the Hondo or the Eastern Equatorial Pacific Ocean SSTs are more 

significant.  Figure 4.3b, 1st Year Lag analysis, and Figure 4.4a, 2nd Year Lag show how 

the Hondo is again significant during the winter months, though during the 2nd year, it 

appears that the impact of the Hondo is diminishing.  By the 3rd lag year, the impact of 

the Hondo is diminished and the central equatorial Pacific Ocean develops into a 

significant SST region.  It is noteworthy that as the lag increases, the Squared Covariance 

Fraction (SCF) represented in the correlation maps also increases.  It is hypothesized that 

as the lag time increases there is less SST-CRB covariance contained in the data.  

Therefore it is easier for the first mode to represent more of the data (increasing SCF 

values) because there is less covariance. 
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4.3.2 Correlation Analysis Results 

Figures 4.5 and 4.6 show the correlation patterns of Z500 correlated with the 

SST-SVD results.  There is a complimentary significant pattern in the geopotential height 

field.  During the simultaneous year winter interval (JFM) a significant cyclonic cell is 

stationed over the west coast of the U.S. and has a “tail” which extends westward across 

the Pacific.  The cyclonic cell is also viewed as a significant region in the central Pacific 

Ocean, over the Hondo region, for the 1 and 3-year lag times.   

 The 2-year lag time shows only the head of the cell that is located over the 

northwestern U.S., though during OND a train of cyclonic and anticyclonic Z500 cells 

appear to link the Hondo with the western U.S.  These results shows that as the SSTs in 

the Hondo region cool, there is an associated decrease in atmospheric pressure over the 

Hondo region, which induces a simultaneous drop in pressure to the west of the CRB 

through the atmospheric teleconnection.  The resulting cyclonic cell near the western 

U.S. enhances the subtropical jet and, in turn, supplies the CRB with moist air from the 

subtropical Pacific Ocean. 

The U200 correlation analysis, shown in Figures 4.7 – 4.8, also compliments the 

SST-SVD analysis.  Looking at the simultaneous response, a significant region is 

identified within the Hondo region showing that increasing wind anomalies occur with 

decreasing SSTs as well as with decreasing atmospheric pressure to the north.  This 

pattern is repeated in the 1st, and 2nd year lags, but is not present during the 3rd year lag.  

At this time there appears a significant region around the central equatorial Pacific, 

suggesting a shift in the jet position associated with the geopotential height response (i.e. 

Figure 4.6, JFM interval).   
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Figure 4.5  0-year and 1-year Z500 correlation maps 

3-month Z500 data correlated with right temporal expansion series from SST-SVD 
analysis for (a) simultaneous response year and (b) 1-year lag times. Red regions show 
increasing pressure anomalies while blue show decreasing anomalies.  These regions 

correspond to the streamflow correlation maps shown in Figures 4.3 and 4.4. The Hondo 
region is shown as dashed rectangle. 
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Figure 4.6  2-year and 3-year Z500 correlation maps  

Same as Figure 4.5 except showing (a) 2-year and (b) 3-year lag times. 
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Figure 4.7  0-year and 1-year U200 correlation maps 

Same as Figure 4.5, but for 3-month U200 correlation values showing the (a) 
simultaneous response and (b) 1-year lag times. 
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Figure 4.8  2-year and 3-year U200 correlation maps 

Same as Figure 4.7 but for (a) 2-year and (b) 3-year lag times. 
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 Therefore, the Hondo appears to be significant during the JFM interval for the 

simultaneous year, as well as the 1st, and 2nd lag years.  It is also important to point out 

that the 3rd year shows the Hondo as significant as part of the Z500 correlation analysis, 

but the SST and U200 analysis show significant regions being in the western tropical 

Pacific Ocean and central Pacific Ocean respectively.  The ‘disaggregation’ of the 

significant regions in the 3rd year is explained in the following section. 

4.4 Discussion  

4.4.1 Climatology 

 In order to provide a context for a discussion about the results, Figure 4.9 was 

created to show the mean climatology data (1968 – 1997) of the U200, and SLP data 

created using the online NCEP/NCAR Reanalysis plotting tool located at 

http://www.esrl.noaa.gov/psd/cgi-bin/data/composites/printpage.pl. The black and white 

dashed line on Figure 4.9 depicts the location of the jet core winds greater than 20 m/s. 

 In general, the U200 climatology maps (Figure 4.9a) shows that the East 

Asian Jet Stream (EAJS) remains relatively weak (~25 m/s) and somewhat north during 

the summer months of each year – essentially permitting the North American Jet Stream 

(NAJS) to transport tropical air into the U.S.  During the winter months the EAJS 

increases in intensity (up to ~65 m/s) and shifts southward until reaching the approximate 

location of the Hondo region.  Though Figure 4.9a shows the U200 jet core (>20 m/s) 

joining the EAJS and the NAJS, the EAJS splits into a northerly component, which joins 

the Aleutian low, and a southerly component which joins with the NAJS on its journey 

across the southern U.S. (hence the southerly dip in the jet core).  The fact that the EAJS  
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Figure 4.9  Zonal wind field (a) and sea level pressure (b) climatology maps. 

Climatology mean taken from (1968 – 1977) 
 
 

is the primary driver of storm tracks toward the U.S. west coast was demonstrated in 

work by Athanasiadis et al (2010) and many earlier works, and the bifurcation of the 

EAJS was previously observed and described by Yang et al (2002). 

 Assisting with this process is the changing subtropical high off the west coast of 

the U.S. as well as the deepening of the Aleutian low.  During the summer months the 
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weakened EAJS is directed northward by the high pressure dome located off the western 

coast of the U.S.   As summer turns to winter the subtropical high decreases while the 

Aleutian low becomes deeper and larger.  The wintertime circulation patterns observed in 

Figures 4.3 – 4.8 demonstrate that they are associated with an enhanced EAJS and a 

decreased subtropical gyre. 

 Rasmussen and Wallace (1983) helped contrast the climatology with the impacts 

of the 1983 El Niño event.  They showed, for this particular El Niño event, the EAJS 

extending further into the Pacific Ocean before beginning to disaggregate, thereby 

carrying more of the storm energy directly toward the central west coast of the U.S. and 

on to the CRB.  Their work helped demonstrate that the concentration and intensity of the 

EAJS contributed to the most extreme CRB water year of the last century. 

 Other work (e.g., Tootle et al, 2009) showed how there were some similarities 

between the ENSO signal predicted for the 2009-2010 Niño 3.4 anomalies, and those 

observed from past El Niño events – including the 1983 and 2003 events.  Interestingly 

enough the 2009-2010 event was relatively typical as far as its impact on the CRB, the 

1982-83 event was the most extreme, and the 2002-03 was the least extreme on record.  

The contrast between the winter of 1982-83 and 2002-03 can be observed on Figure 4.10.  

The JFM zonal wind was only slightly greater than climatology, and the west coast 

pressure dome was only marginally lower than climatology.  It appears that these two 

factors contributed to making the 02-03 El Niño event appear like an average water year.  

In fact it brought the least amount of rainfall of any El Niño event in the last 60 years, a  
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Figure 4.10  Comparison between 1983 and 2003 ENSO Events 

Showing (a) mean U200 JFM values from 1983, (b) mean U200 JFM values from 2003, 
(c) mean SLP JFM values from 1983, and (d) mean SLP JFM values from 2003. Dashed 
white line represents the dominant location (>20m/s) of the jet stream, and dashed box, 

the Hondo region. 
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phenomenon coincident with the quasi-decadal drought cycle as shown in Wang et al. 

(2009).  This information helps demonstrate that the circulation patterns can operate 

somewhat independently of the ENSO signal, and therefore, need to consider other 

factors when assessing climate impacts on the CRB. 

4.4.2 The Lagged Relationship 

Understanding the climatology, it can now be seen that the SVD and correlation results in 

a proper light.  The results from the SST-SVD analysis show a significant covariance 

region corresponding to the location of the EAJS as well as the associated atmospheric 

circulation patterns observed in the Z500 analysis and in the SLP climatology maps.  In 

addition to this, there is a noticeable ENSO-like pattern which appears even though the 

ENSO does not have a significant relationship with the upper CRB (Dettinger et al., 

1998; Rajagopalan and Lall, 1998).  This ENSO Pattern is not observed in any of the 

lagged response years, but the Hondo remains identifiable.  Therefore one may ask: Are 

the regions identified in the lagged analysis part of another climate cycle acting on the 

CRB, of are they simply the results of a statistical analysis? 

 Research by Wang et al (2009, 2010b, 2010c) (hereafter referred to as W09, 

W10b, and W10c respectively) helps to answer this question.  Examining the observed 

10-20 year cycle in precipitation over the intermountain west, W09 demonstrate that 

within the transition phase of the Pacific Quasi-Decadal Oscillation (PQDO) there is a 

lagged relationship between pacific SST’s and observed precipitation in the 

intermountain west (It is important to note that the PQDO referred to in this paper is not 

the same as that defined by Mantua and Hare (2002), but the result of work by Zhang et 

al. (1997b) which is the first principle component of the Pacific Ocean SST’s from 25˚ S 
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to 60˚ N, which contains the variation from the tropics).  Specifically, the analysis in 

W09 suggests that the PDO cycle leads the intermountain precipitation cycle by 3-4 

years.   

The research in (W10b) tested the applicability of the 10-20 year climate cycle to 

a surface water hydrology question, namely: what is the cause behind the prominent 

coherence between the central tropical Pacific SSTs and the surface elevation of the 

Great Salt Lake (GSL)?  The results of this work reaffirmed the 3-year lagged response 

between pacific SSTs and precipitation and furthered demonstrated a 3-year lagged 

response in the GSL elevation following the precipitation.  This process leads the GSL to 

lag the central tropical Pacific SST variations by a half phase (~6 years) of the quasi-

decadal cycle of the PQDO.  The result of W10b suggests that precipitation fluctuations 

near the CRB are more strongly influenced by non-extreme ENSO periods rather than by 

the typical, strong ENSO events. 

Comparing the results obtained in W10b with the SST-SVD results from this 

paper, it becomes apparent that the Hondo region reveals persistent responses in three 

consecutive lags (0-2) but dissipates in lag 3.  Figure 4.4b, while showing a significant 

region stretching from the western tropical Pacific region into the Hondo, also shows the 

significance of the central equatorial Pacific Ocean becoming significant (a pattern which 

is also identified in Figure 4.8b.  In other words, it appears that the reason the Hondo SST 

is no longer significant by the third lag year is that it has past the typical 3 year influence 

period of the PQDO.  The comparison of these two papers appear to show that the 

significance of the Hondo region, which is also observed during the transition phases of 
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the PQDO (W10b), can be explained as an intermediate cycle falling in between the 

inter-annual ENSO events and the slow-varying PQDO cycles. 

Additional work in W10c helps solidify this conclusion, by showing that the 

Hondo may induce an atmospheric wave train which has a direct relationship with the 

CRB during transition phases.  Firstly, the 3-year lag time between the Pacific SSTs and 

the intermountain precipitation was established by analyzing the water vapor budget over 

the Great Basin.  This examination identified that the water vapor flux convergence (one 

of the terms in a water vapor budget) is the primary contributor to precipitation over the 

Great Basin, requiring transient activity (e.g., cyclone waves) to occur in the right place.  

Therefore an empirical orthogonal function (EOF) analysis was performed using the 

gridded moisture flux potential data over the Pacific Ocean.  The coherence between the 

Pacific SSTs and the first mode (EOF1) of the moisture flux potential are highly 

correlated.  Likewise the Pacific SSTs are also highly correlated with EOF2, but at a 3-

year lag time.  In other words the primary modes of the atmospheric moisture budget are 

associated with Pacific SSTs leading the Great Basin precipitation by about 3 years. 

The way that the SVD analysis contained in this research coincides with the 

physical connection between the Great Basin precipitation and the PQDO identified in 

W10b and W10c.   In particular, the important role of the Hondo SST variability and its 

associated teleconnection wave train, as were shown in W10c, are both similar to those 

revealed in the SVD analysis and the circulation patterns throughout lags 0-2 (Figures 

4.4-4.8).  Along its path the Hondo is visible as a component of this short wave train (see 

Figure 2b of W10c) which induces anomalous low pressure to the west of the 

Intermountain region.  The location of the starting point of the short-wave train not only 
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helps to explain Hondo’s existence and importance, but it explains why the western 

tropical Pacific Ocean region shown in Figure 4b (JFM interval) is significant as well.  

Therefore the Hondo is simply one component on a track of regions responsible for 

transporting moisture from the tropics to the CRB. 

Another insight into the reason for the 1-year lag of the Hondo (and the 

diminishing 2-year lag as well) is the fact that because the Hondo is part of the wave train 

during the winter months (JFM) of transition years (non-extreme ENSO years), it should 

have a stronger signal with the CRB during periods when the ENSO is not impacting 

climate signals in the Pacific Ocean.  Since the ENSO signal is short-lived, the Hondo 

appears at longer lead times because it is always a part of the mechanism transporting 

moisture to the CRB.  By the 3-year lag time the persistence of the Hondo is superseded 

by the signal coming from the central equatorial Pacific Ocean (i.e. the QDO).  This 

demonstrates that while ENSO remains a considerable factor affecting the CRB, the 

Hondo is a “new” factor that has a sustained effect on the CRB streamflow for up to three 

years.  This finding strongly suggests the potential for an extended range of streamflow 

prediction. 

4.5 Summary and Conclusions 

 The connection between the Hondo and the CRB streamflow is identified through 

two avenues in this paper.  First, the SVD analysis of SST, as well as the correlation 

analysis with the Z500 and U200 data, showed that the SST-CRB connection identified in 

Lamb et al (2010) and Aziz et al (2010) exists in the atmospheric data at similar lag 

times.  This analysis demonstrated the connection between the Hondo was not simply a 

statistical relationship between two independent variables, but a result from the 
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covariability of the Pacific Ocean and the atmospheric circulation through the so-called 

teleconnection. 

 The second way the Hondo-CRB connection was identified was by understanding 

the physical connection behind the lagged response between the two datasets.  The work 

provided by Wang et al., (2009, 2010a, 2010b) helped identify the quasi-decadal cycle 

embedded in the Pacific Ocean and the fact that the precipitation in the inter-mountain 

west region is on a similar cycle, but lags 3-years behind the SST cycle.  The physical 

connection between the Pacific Ocean and the precipitation was outlined by identifying a 

similar 3-year lag in the first two principle components (EOF1 and EOF2) of the filtered 

moisture flux stream function.  EOF1 was highly correlated with the SST cycle while 

EOF2 was highly correlated with the precipitation cycle. 

 The utility of this research is to create the technical confidence needed to use the 

Hondo as a potential tool for creating long-lead forecasts of the CRB streamflow.  The 

National Weather Service utilizes an Extended Streamflow Prediction (ESP) software 

tool that employs historic temperature and precipitation time series to generate an 

ensemble of future streamflow scenarios.  Knowledge about the lagged relationship 

between the Hondo and the CRB can be used to weigh the ESP output, essentially adding 

a “long-lead cycle” bias to the historical data.  The result of this work has the potential to 

improve the long-lead forecast ability for the CRB. 
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CHAPTER 5 

TESTING A POST-ANALYSIS WEIGHTING TECHNIQUE TO IMPROVE LONG-

LEAD FORECASTS OF THE COLORADO RIVER BASIN 

5.1 Introduction 

The National Weather Service’s (NWS) Colorado Basin River Forecast Center 

(CBRFC) issues regulated water supply forecasts for the Colorado River Basin on a 

monthly basis.  Each month the forecast includes streamflow volumes expected for the 

following three months.  During the winter and spring months, the typical 3-month 

forecast is accompanied by the season spring runoff forecast, given as a 4-month lump 

sum volume for the April – July period.  In addition to these official forecasts the CBRFC 

produces a yearly outlook on August 1 and October 1 for a given water year for the 

following water year.  These forecasts represent the best estimate of water resource 

supply in the Colorado River Basin (CRB), and are created using the Extended 

Streamflow Prediction (ESP) software.   

Water resource managers at the U.S. Bureau of Reclamation (USBR) use the 

forecasts created by the CBRFC to model the next 24-months of resource storage, 

releases, and diversions in order to predict future reservoir levels and plan for hydro-

power generation supply.  Since the CBRFC forecasts run at most for 12 months and the 

USBR creates a 24-month projection of water usage, the USBR must make estimates of 

the last 12 months of the 24 month projection.   This estimate is partially made by 

extrapolating information from the CBRFC forecasts and the remainder is filled with the 

30-year mean streamflow observed from 1971 – 2000.   Therefore an improvement to the 
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status quo is to identify climate patterns which can increase the accuracy of the long-lead 

(> 1 year) streamflow forecasts in the CRB. 

The utility of long-lead forecasts based on climate has been introduced and 

assessed in previous research.  For example, because of the prominence of the El Niño 

Southern Oscillation (ENSO) signal on streamflow in the western United States, the 

related indices explaining the ENSO have appeared in many studies (Piechota and 

Dracup 1996; Piechota et al. 1997; Hamlet and Lattenmeier, 1999; Clark et al. 2001; 

McCabe and Dettinger 2002; Werner et al 2004; Grantz et al, 2005).  However McCabe 

and Dettinger (2002) as well as Werner et al (2004) demonstrated that the ENSO has very 

little impact on CRB streamflow, because of the weak correlation with the upper CRB 

river gauges.  Therefore if the ENSO signal can not enhance the long-lead streamflow 

forecasts, then which other climate data can be used? 

The current paper builds upon recent research (Lamb et al, 2010a; 2010b; Aziz et 

al, 2009) which shows there is an area of the Pacific Ocean (hereafter referred to as 

Hondo) which demonstrates a significant correlation with streamflow in the Colorado 

River Basin (CRB).  Both Lamb et al. and Aziz et al. identified this region using a 

singular value decomposition analysis.  In both cases the level of significant covariance 

was determined by finding regions whose covariance exceeded the 95% significance 

level of the correlation coefficient.  Lamb et al (2010a) show the influence of Hondo 

when comparing the winter time SST’s of Hondo from a given water year, with the total 

yearly streamflow of the following water year.  Aziz et al. show a similar Hondo pattern 

when comparing SST and snow water Equivalent (SWE) data from the Rocky Mountains 

in the U.S. with a year lag.  Finally, Chapter 4 demonstrated that the Hondo is connected 
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to streamflow in the CRB during the winter months through an enhanced jet stream and 

decreased subtropical gyre on the west coast of the U.S. 

Because the ESP output is an ensemble of possible streamflow scenarios for 

representing a given forecast period, it is possible to weigh the output and thereby 

introduce a climate-based bias in order to create a new forecast value.  Work by Werner 

et al (2004)  proposed to do this using climate index data based on the ENSO signal, in 

order to improve the spring runoff forecasts of the CRB based on climate observations 

from the previous fall or summer.  

Because the ENSO signal is weak in the CRB, the existing research has provided 

the foundation for using the Hondo as a basis for forecasting the streamflow.  Therefore, 

the proposed research aims to determine the 3-month interval, lag time, and weight kernel 

required to optimize the forecast skill score.  The forecast skill scores used are the root 

mean squared error (RMSE) and the Linear Error in Probability Space (LEPS) score.  

Both are used since the RMSE is a parametric assessment with a long history of 

application, while the LEPS score is a non-parametric assessment. 

5.2 Data 

5.2.1 Streamflow Data 

The USBR maintains a spreadsheet of naturalized streamflow data for 29 gauges 

within the CRB which can be obtained from the following URL 

(http://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html).  Since a given water 

year actually begins and ends in different calendar years, when this report refers to a 

given water year (for example, 1996) it is referring to the period October 1, 1995 through 

September 30, 1996.  Therefore when the total yearly streamflow of a given water year is 
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shown, this is referring to the total water volume observed at a given gauge from October 

1 through September 30 of the specified calendar year.  In order to maintain some 

continuity between the previous and current work, this data set is used here because it 

was used in both papers by Lamb et al (2010a and 2010b). The 29 locations are displayed 

on Figure 5.1. 

5.2.1 Sea Surface Temperature Data 

The SST data used in this research is a subset of the gridded data developed by Smith et 

al (2008).  The data is available online at (http://www.ncdc.noaa.gov/oa/climate/research/ 

sst/ersstv3.php) through the National Oceanic Atmospheric Administration (NOAA) 

National Climate Data Center (NCDC).  The SST data are converted into Excel format 

using software, named Ocean Temperature Analysis (OTA), developed at UNLV 

specifically for this purpose.  The Smith SST dataset is a 2º x 2º monthly mean gridded 

dataset existing from January 1854 through the present day.  The subset of this data is 

defined to represent the boundary of the Hondo region (i.e. 150 E – 200E, 34N – 24N) as 

defined by Aziz et al (2010).  The mean SST anomaly value for this region is the Hondo 

index value.  

As previously mentioned, the current research showing the Hondo-CRB 

correlation demonstrates a lag time of more than a year between the changes in 

temperature and the streamflow.  Specifically, the research by Lamb et al (2010a), 

showed that the 3-month average SST intervals of January-March, and February-April 

from a given water year, has a significant correlation with streamflow variation for the 

following water year volume.  Other research into the strong winter monsoon from 

northeast Asia (Zhang et al, 1997a) showed that east Asian jet stream passes over the 
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Hondo region during the December – February interval.  Since this is the case, the current 

research proposes using three different 3-mononth average predictor intervals, namely 

December-February (DJF), January-March (JFM), and February-April (FMA).   

 

 

Figure 5.1  Location map of 29 USGS streamflow gauges 
 
 

Three split-sample alternative analyses are performed to forecast historic water 

years.  This is done first by applying weights the years 1976-2005 (training sample No.1) 

in order to forecast the water years from 1906 – 1975 (testing sample No. 1).  This 

particular 30-year period was selected as the weighting period because it is typically used 
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by the NWS's Colorado Basin River Forecast Center to calibrate their ESP software.  The 

ESP produces output streamflow traces which are based on the temperature and 

precipitation data from the years 1976-2005.    In order to test the sensitivity of the 

selection of training and testing sample, the second split-sample alternative is performed 

using 1906 – 1955 as the training sample to forecast the water years of 1956 – 2005.  

Finally the third alternative uses 1956 – 2005 as the training sample to forecast the water 

years from 1906 – 1955.  The years of data selected for Alternatives 1 and 2 were chosen 

simply to provide forecasts for the 100 year period stretching from 1906 through 2005. 

5.3 Methodology 

The forecasts in this work are created using a kernel, to weigh the streamflow at 

three different lag times: 0-year (simultaneous year), 1-year, and 2-year lags.  For 

example, if a forecast for the 0-year lag is to be created for the 1920 water year the 

Hondo value from JFM 1920 is compared to the JFM Hondo values from all the years in 

the training sample.  The difference between the 1920 Hondo value and the values of the 

training set are calculated, sorted in ascending order and then ranked.  The difference, or 

rank, is the primary information used in the weight kernel calculation.  Once the kernels 

are calculated all of the weights for a given year are proportioned so that their sum equals 

one.  Since this process is based on the DJF, JFM and FMA intervals then there are three 

different sets of weight kernels produced.   

Because the differences between all forecast years and all training years are 

calculated at the start, the lag time for the forecast comes from selecting the appropriate 

weight vector when the forecast value is generated.  For example if the 1920 water year is 
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forecasted, a 0-year lag time uses the weight vector corresponding to 1920.  For a 1-year 

lag, the 1919 weight vector is used and so forth. 

5.3.1 Weighting Kernels 

Four different kernels are selected to create forecast values.  The kernel which 

results in the highest improvement in forecast skill is considered the optimal choice.  The 

first weight kernel is taken from research by Rajagopalan and Lall (1999) which is used 

in a k-Nearest Neighbor (k-NN) technique to downscale climate data from yearly 

observations to daily data.  The kernel is defined as follows: 
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Here Ri, is the rank of a training year i.  The kernel is designed to represent directly the 

probability of resampling as its weights have a possible values of 0 – 1. Since this weight 

kernel is based on the rank alone, there is some concern that regardless of the difference 

in Hondo values, there will always be a year which receives a weight of 1. 

The second kernel selected is a linearly distributed proportion based on the 

absolute differences in SST values.  W2 is defined as: 
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The values di and di,max represent the distance between year i and the forecast year, and 

the maximum distance calculated from all years, respectively.  The absolute value is 

taken because it does not matter if the training year is more or less than the test year.  

This kernel has two purposes.  First, a given year could only have a resampling value of 

one if and only if the observed SST is the same as the target year SST.  Second, each 
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successive weight is distributed on a roughly linear, but negative, sloping line so that year 

i has only slightly more weight than year i+1.  However, since the behavior of this kernel 

is a decreasing linear distribution of weights, then there is a chance that it will give too 

much weight to years which are not actually “near” to the target year.
 

The third weight, W3 is given as the inverse distance squared weight:  
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Once again, di is the difference between the training year and the forecast year.  Because 

the theoretical values of W3 range from -∞ to ∞, the weights for each forecast year are 

proportioned so that values range between 0 and 1 and their sum is equal to 1. This 

weight kernel has a plotted behavior similar to W1 except that it gives even less weight to 

observations with increasing values of di.  Since this kernel does shift the majority of the 

weight to the first or second years some relevant information from other years may be 

ignored.  

The final kernel, W4 is simply the inverse distance: 
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Both W3 and W4 are commonly used kernels used in resampling and interpolating 

applications or as comparisons to other more sophisticated methods.  W4 does not weigh 

the closest 1 or 2 as heavily as W1 or W3, but since it is not linear it also does not 

distribute the weights to too many of the other, adjacent observations. 

Weights are calculated using the raw SST values.  A test was run to see if there 

would be any difference between using raw data and calculating the Hondo anomalies 

which were used in the SVD analysis (Lamb et al. 2010, Aziz et al,. 2010).  The results of 
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this simple test demonstrated that there was no significant difference between the forecast 

skill score resulting from these two data sets. Additionally, using proportioned weights 

were compared to raw (un-proportioned) weights to see if the forecast skill is sensitive to 

either method.  The results of this test demonstrated that there was no significant 

difference.  From these two small tests the use of the raw Hondo data is selected for 

testing because it is simpler to employ, and the proportioned weights are used because 

they communicate the idea of resampling probability better than the raw weights. 

5.3.2 Forecast Development 

Forecasts are created using the weight vector in a weighted bootstrap procedure, 

where 1000 re-sampled values are taken from the training set.  The mean value of each 

re-sampled set is calculated and then the mean of all these means is calculated to arrive at 

the forecast value.  The weighted bootstrap is a method has been used extensively in a 

variety of fields (Efron 1979, 1982).  Typically the bootstrap method is used to estimate a 

population parameter from a sample dataset.  However, in this application, the goal is to 

add a bias to the training dataset which reflects the link between known climate 

conditions and CRB streamflow. 

Forecast values are calculated for a given split sample alternative, 3-month 

period, weight kernel, and lag time.  Each combination of alternative-period-kernel-lag 

represents a single forecast scenario.  Since there are three split-sample alternatives, three 

3-month periods (DJF, JFM, and FMA); four weight kernels (W1, W2, W3 and W4); and 

three lag times (0, 1, or 2 years) there are a total of 108 forecast scenarios (3 x 3 x 4 x 3). 
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5.3.3 Forecast Skill Scores 

Assessing the forecast skill is assessed using the root mean squared error (RMSE) 

and the linear error in probability space score (LEPS) scores.  Relative error (Abramowitz 

and Stegun, 1972) is also used here as a quick way of assessing the error of a forecast by 

comparing the forecast error to the observed value using the following equation: 
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Here the forecast, F at streamflow location, l, and year, y, are compared to the 

observation, O of same location and year.  The RE is used here to create a time series plot 

of the forecasts errors, in order to identify periods of weak forecasting ability.  The utility 

of the RE is not only to provide an indication of how close a given forecast is to the 

observation value (as a percent fraction of the observed) but also to give an indication of 

the bias in the forecast method.  Since the RE is calculated for each year and location, the 

mean forecast bias is computed at each location for a given forecast scenario. 

The RMSE is widely used to assess forecast errors (Wilks, 2006).  A strength of 

the RMSE is its simplicity in communicating the forecast error in the same units as the 

forecasts themselves.  However, the RMSE assumes that the forecast errors are 

distributed normally and it is therefore sensitive to forecast error variance.  This makes it 

difficult to interpret the RMSE results as there is no consistent relationship between the 

RMSE and the average error of forecasts.   

The RMSE is not be reported directly.  Since the current method of modeling 

CRB streamflow projection uses the 1976-2005 mean for the long-lead forecasts, then a 

skill score based on the forecast RMSE and the climatology RMSE (1976-2005) is 

calculated.  The skill score formula is given as  
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This equation is used to demonstrate the relative improvement of the forecast method 

(RMSEf) over the climatology (RMSEc).  RMSEc is calculated by finding the RMSE using 

the 1976-2005 mean as the forecast value for all years at a given streamflow location. 

Also used to asses forecast skill is the Linear Error in Probability Space score 

(Ward and Folland, 1991; Potts et al, 1996).  The LEPS score is used here because it does 

not assume that the errors have a defined distribution.  The LEPS score gives a higher 

score for forecasts which predict extreme events, as opposed to forecasts of observed 

values which are closer to the mean.  The work by Potts revised the LEPS score by Ward 

and Folland to remove a “bending back” problem when forecasting a continuous variable, 

as is the case in this research. 

The basic concept of the LEPS score is to compare the forecast point with the 

observed data inside probability space.  To complete this task we generate an empirical 

cumulative distribution function (eCDF) from the observed data.  The eCDF is created 

from the streamflow data used as the testing set.  In other words the first split sample 

analysis uses observed streamflow from years 1906-1976 create the eCDF (n1 = 70), the 

second split sample analysis uses 1956-2005 (n2 = 50), and the third uses 1906-1955 (n3 

= 50).  The eCDF gives a weight of 1/n to each observed value.  Since there are 100 

observation points at each streamflow gauge, the y-axis of the eCDF is defined by a 

vector P, where P = q/101 as ‘q’ goes from 1 to 100.  P does not include the points '0' or 

'1' in order to ensure that there can be forecast values interpolated below and above the 

range of  observed streamflow values at a given location. 



www.manaraa.com

103 

The LEPS score is calculated from the following formula as developed by Potts et 

al (1996): 

 2 23(1 | | ) 1f o f f o oLEPS P P P P P P= − − + − + − −  

where Pf  and Po  represent, respectively, the probabilities of the forecast and observed 

streamflow values.  The values of Pf and Po are read from the eCDF, (see Figure 2) for a 

given forecast year y, and location l.  Values of the LEPS score range from -1 to 1.5. 

 

 

Figure 5.2  Schematic showing how Pf and Po are obtained from the eCDF 
 
 

5.3.4 Average Skill Score 

The goal of the average skill score is to summarize the LEPS scores obtained at a 

given location, for all forecast years, and express this skill in terms of a percentage 

improvement (or decline) with respect to using the mean as the forecast value.  The 

average skill score (Potts et al., 1996) is found by dividing the sum of all LEPS scores at 

a given location by the sum of the maximum possible, or minimum possible, LEPS scores 

as determined by the following equation: 
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If the numerator is positive, then the denominator is the sum of the maximum possible 

LEPS scores (when Pf = Po); if the numerator is negative, then the denominator is the 

sum of the minimum possible LEPS scores.  The LEPSmin value is obtained when the 

forecast point is furthest from the observation point. Therefore if Pf  < 0.5, then the 

minimum score is found by setting Po = 1. If
 
Pf  > 0.5, then the minimum score is found 

by setting  Po = 0.  Because SK is the aggregate of several years of forecasts, a score 

greater than 10% is considered to be significant. 

5.4 Results 

5.4.1  Forecast Skill Results Summary 

 In order to identify the more significant forecasts the average skill score across all 

gauges is used to identify the most successful forecast scenario for each lag time and for 

each split-sample forecast alternative.  Table 5.1 summarizes these values to provide a 

quick view of the most successful forecast scenarios.  The results are divided to show the 

difference between the LEPS and RMSE skill scores, the difference between each 

scenario, and the difference between each split-sample alternative. 

It is apparent that the LEPS scores are higher than the relative RMSE scores.  

Based upon work by Willmott and Matsurra (2005) it is assumed that the RMSE scores 

are low because this metric assumes the forecast errors are normally distributed.  It is also 

because the RMSE is not constant over a given range of variance in the errors (Willmott 

and Matsurra, 2005; Shi et al, 2008).  Since the LEPS score does not assume a 
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distribution for the errors its scores are not affected in the same way as the RMSE.  

However, the LEPS score rewards forecasts of extreme values more than forecasts of 

values closer to the mean.  Therefore the individual LEPS score results must also be 

examined further.  

 

 
Table 5.1  Summary of successful scenarios based on LEPS and RMSE scores. 

 
 

It is apparent that the LEPS scores are higher than the relative RMSE scores.  

Based upon work by Willmott and Matsurra (2005) it is assumed that the RMSE scores 

are low because this metric assumes the forecast errors are normally distributed.  It is also 

because the RMSE is not constant over a given range of variance in the errors (Willmott 

and Matsurra, 2005; Shi et al, 2008).  Since the LEPS score does not assume a 

distribution for the errors its scores are not affected in the same way as the RMSE.  

However, the LEPS score rewards forecasts of extreme values more than forecasts of 

values closer to the mean.  Therefore the individual LEPS score results must also be 

examined further.  
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 Another quick observation from Table 5.1 is that the JFM average Hondo values 

and the third weight kernel (JFM | W3) is the most successful scenario at all lag times 

(based on the LEPS scores).  This is helpful because W3 is a simple kernel and, therefore, 

can be communicated and implemented easier than a more complicated kernel such as 

W1. 

Finally, it appears that the forecast technique is sensitive to the data used in the 

resampling process.  The best results appear when resampling the years of 1956 – 2005 in 

order to create forecasts for 1906 – 1955.  The second best results appear when 

resampling 1976-2005 to create forecasts for 1906-1975.  A rank sum test is performed to 

compare the relative errors from each alternative in order to determine if the forecast 

errors from each alternative are significantly different.  The test results are shown on the 

bottom of Table 5.1.  There is no significant difference between forecasts of Alternative 1 

and 2.  However, the probability that either Alternative 1 or 2 is similar to Alternative 3 is 

sufficiently low to conclude that they are not similar. The latter half of the streamflow 

data includes some of the wettest (1982-1984) and some of the driest (1999 – 2005) on 

record.  Therefore, it appears that when these years are included in the resampling 

process (as is the case in Alternatives 1 and 2) the forecast skill improves significantly.  It 

is noteworthy that the CBRFC has identified this benefit as well.  Starting with the 2011 

water year the CBRFC will begin utilizing the 1981 – 2010 period as the basis for 

training their ESP software.  In a departure from previous forecasting policy, CBRFC 

will simply add a year to the calibration period (analogous to the resampling period of 

this study).  Therefore by the 2021 water year the ESP software will be using 40 years of 
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historical inputs (1981 – 2020) to create forecasts (Personal Communication Kevin 

Werner, CBRFC; May 2010). 

5.4.2 Forecast Skill Maps 

In order to identify the region of increased or decreased forecast skill, the top 

forecast scenarios, for each lag time and for all three alternatives, are mapped and 

displayed on Figure 5.3. This figure displays nine (9) maps showing the average LEPS 

skill scores at each of the streamflow locations in the basin.  The first row of maps on 

Figure 3 (a – c),  representing Alternative 1, show that for the upper reaches of the Green 

River, the forecast skill does not show a significant improvement.  Along the headwaters 

of the Colorado and Gunnison Rivers there are a few positive results, and in the lower 

CRB there are only few significant improvements for gauges not along the Colorado 

River itself.  This pattern is generally repeated for each alternative and for each lag year, 

except for Alternative 3, which generally shows a weak pattern of forecast skill results at 

0 and 1-year lag times. 

Despite the results of the rank sum test from the previous section, Figure 5.3 

shows an observable difference between the forecast skill results of Alternative 1 and 2.  

For example, Figure 5.3d shows Alternative 2 providing an improved forecast approach 

in the upper CRB - especially along the headwaters of the basin.  It also shows that the 

skill diminishes as the lag time increases, and that the number of gauges showing 

successful forecasts also diminishing.  It is expected that the forecasts would demonstrate 

their highest skill scores at the 1 year lag time because of the interference that shorter, 

more intense climate cycle have upon the basin.  Even though the results are not expected  

 



www.manaraa.com

108 

 
Figure 5.3  Maps showing average skill score results.  

Non-significant results (<10%) displayed as black dots.  Figures a-c represent the results 
from the 1st split sample alternative (Alt 1), d - f Alt. 2, and g - i Alt. 3.  The first column 

(Figures a, d, g) are the 0-lag forecasts, the second column (b, e, h) are the 1-year lag 
forecasts, and the third column (c, f, i) are the 2-year lag forecasts. 
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they seem to make more sense by showing a decreasing and diminishing ability to use the 

Hondo as a basis for generating forecasts. 

5.4.3 Forecast Time Series 

Because the average skill score is a composite of all the forecasts generated at a 

location, it is necessary to investigate the individual forecast values to determine if the 

LEPS scores are higher because they give more weight to successful forecasts of extreme 

values and if there are identifiable patterns in the forecast’s successes or failures.  Figures 

5.4 and 5.5 display scatter plots comparing the forecast and observed values at the 1-year 

lag time from Alternative 2 and 3 respectively.  The correlation value for each scatterplot 

is displayed in the lower right-hand corner of each plot.  

The main observation from Figures 5.4 and 5.5 is that there are few gauges where 

the correlation between the forecast and observed is significant at the 95% level (i.e. r > 

0.273) While these figures show an overall performance, they do not explain if there are 

certain periods of time where the forecasts perform better than others.  Figure 5.6 – 5.8 

display this observation better by plotting the forecast relative error from alternatives 2 

and 3 onto a single time series plot.  Figure 5.6 shows the forecast errors at eight gauge 

locations for the 0-year lag time.  Figures 5.7 and 5.8 show the same, except they show 

the 1-year and 2-year lag times.  The highlighted regions shown on these figures identify 

periods where streamflow was below average at the Lees Ferry gauge (USGS ID 

09380000) with less than two consecutive years of above average streamflow in between.  

Figure 5.6 shows that, with the exception of (d), (f), and (h) there is a pattern to 

the skill scores.  For example the forecast skill is observed as more erratic for years  
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Figure 5.4  Scatterplots from Alternative 2 (Observed vs. Forecast) 
Forecasts represented here at 8 sample gauge locations for the 1-year lag time.  Pearson-r 

values are displayed in the lower right-hand corener of each plot. 
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Figure 5.5  Scatterplots from Alternative 3 (Observed vs. Forecast)  

Forecasts represented here at 8 sample gauge locations for the 1-year lag time.  Pearson-r 
values are displayed in the lower right-hand corener of each plot. 
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Figure 5.6  0-year lag forecast relative errors for eight gauge locations 

Figure displays relative error time series from alternatives 2 & 3 created from 0-year lag 
time.  Shaded areas represent low-flow periods defined as below average streamflow with 
less than two consecutive years of above average streamflow. Pearson-r values for each 

alternatives 2 and 3 are displayed in the lowers left and lowere middle of each plot, 
respectively. 
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Figure 5.7  1-year lag forecast relative errors for eight gauge locations 
Same as Figure 5.6 except showing the 1-year lag time. 
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Figure 5.8  2-year lag forecast relative errors for eight gauge locations 
Same as Figure 5.6 except showing the 2-year lag time. 
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highlighted as low flow years.  In between these periods the forecast errors are 

comparatively small and much less erratic (this appears to hold true for all location 

except for the stations shown on Figure 5.6 – 5.8 (d), (f), and (h)).  These periods 

correspond to several of the driest years of the last century as shown by the highlighted 

regions. For example (d), appears to show an inconsistent forecast skill until the early 

1940’s.  (f) shows that prior to the late 1920’s the forecasts worked well.  However, after 

1930 the forecast errors are very inconsistent.  Finally, Figure (h) shows that the forecast 

skill of Bill Williams River gauge is not acceptable for any period of time. 

The poor forecast skill along the Bill Williams River is not surprising since this 

location has the highest amount of streamflow variance in the CRB.  The skill displayed 

at the Green River station is also not surprising because the SVD analysis provided by 

Lamb et al (2010b) showed how the upper reaches of the Green River are not always 

significantly correlated with the Hondo region.  There appears to be a limit to how far 

north the Hondo can be applied, and perhaps this explains the low skill at the San Juan 

River station. 

Perhaps one reason there may be periods where the forecast skill is extremely 

poor may be attributed to the change in significance of a particular climate cycle.  While 

climate cycles tend to appear with predictable amplitude and period, they can experience 

periods of inactivity, where the amplitude of the cycle is noticeably dampened.  Wang et 

al (2010b) identified a quasi-decadal oscillation in Pacific Ocean SSTs which 

demonstrated a significant correlation with precipitation in the intermountain west region 

with the SSTs leading precipitation by 3-years. Lamb et al (2010b) identified that the 

Hondo is part of the short-wave train which transports warm moist air from the tropical 
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Pacific Ocean toward the intermountain west.  From 1900 – 1945 and from 1965 - 

present the QDO behaves in a predictable manner (see Figure 4 of Wang et al, 2010b) 

However, during the period from 1945 – 1965 the identified cycle was mostly inactive, 

showing a diminished correlation with intermountain west precipitation. Therefore, 

forecasts created from a single climate phenomenon will not always perform the same 

simply because of climate variability.  

5.5 Conclusions and Recommendations 

   The overall results of this work demonstrated that climate information can be 

applied to weigh historical data in order to generate improved long-lead forecasts.  This 

approach was tested using streamflow data from the Colorado River Basin (CBR) in an 

effort to find improved streamflow forecasts at lead times greater than one year.  The 

basis of this approach is rooted in an understanding of the long-lead climate trends 

impacting the CRB. 

 Previous studies helped identify a region of the Pacific Ocean, named the Hondo, 

which represents a portion of the atmospheric short-wave train which transports moist air 

from the Pacific Ocean Tropics.  The weighting technique used the mean, wintertime 

SST values of the Hondo region to determine how similar a given forecast period is to all 

of the historical data.  Those historic years closest to the forecast period were weighted 

more in a resampling technique designed to add a climate-bias into the forecasts.  Several 

different weight kernels were tested, and the inverse distance kernel demonstrated the 

highest skill. 

 The results of this research show that it is possible to use known climate cycles as 

a basis for generating forecasts at lead times of 1-year or greater.  These results also 
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identify places for further study.  For instance the observation that the periods where 

forecast errors were unacceptably high also coincided with periods of below average 

streamflow.  It is hypothesize that this is because the current forecast technique does not 

explicitly consider soil moisture in the formulation of the forecast.  Though the soil 

moisture state is implicit in the SVD analysis of Lamb et al (2010a), one improvement to 

the current forecast method would be to apply this technique to forecasts produced by the 

CBRFC’s ESP software.  Since the ESP utilizes soil moisture as an input into their 

physical model, weighing the ESP output based on climate relevance would incorporate 

soil moisture states into this forecasting procedure and potentially increase the forecast 

skill. 
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CHAPTER 6 

CONTRIBUTIONS AND RECOMMENDATIONS 

6.1 Contributions 

The research completed in this dissertation presents several contributions to the 

field of water resource engineering, including an improved understanding of how changes 

in Pacific Ocean sea surface temperatures impact the Colorado River Basin (CRB), how 

these changes are connected to the CRB, and how this knowledge can be used to improve 

long-lead water supply forecasts. 

Prior to this work, there was an understanding that the known influences of the El 

Niño Southern Oscillation did not have a significant impact on the CRB. Therefore any 

improvement to long-lead CRB water supply forecasts would have to come from an 

improved understanding of how and where climate impacts CRB streamflow 

Answering Question 1 identified a 1-year teleconnection between the Pacific 

Ocean and the CRB.  The region of the ocean with a significant correlation was located 

from 35N – 25N and from 150E – 200E (160W).  The Hondo, as this region was named, 

had a negative correlation relationship with the CRB streamflow, meaning that 

decreasing SSTs were correlated with increasing streamflow.  This region was identified 

in other research while studying SST impacts on drought conditions (Rajagopalan and 

Lall, 2000), precipitation (Wang and Ting, 2000), and North Platte River streamflow 

(Soukup et al., 2009). Each of these studies used different data, even different SST data, 

and the Hondo region was identified as significant.  A study performed at the same time 

as Task 1 identified the Hondo when studying the impact of SSTs on snow water 

equivalent measurements in the Rocky Mountains.   
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Question No. 2 sought to describe the physical connection between the wintertime 

SST anomalies (i.e. Hondo anomalies) and the CRB.  This analysis demonstrated that the 

Hondo is correlated with the East Asian Jet Stream (EAJS).  During the winter months 

the EAJS passes across the southern tip of the main island of Japan, and enters the Pacific 

Ocean over the Hondo, then bifurcates: the northern split joining the Aleutian low, and 

the southern split dipping southward to join the North American Jet stream.  This system 

is also correlated with a significant low pressure system that develops in conjunction with 

the intensity of the EAJS and Hondo SSTs in order to impact CRB streamflow.  This 

system was identified to be significant with CRB streamflow at 0, 1 and 2 year lag times.  

By the third year the Hondo was no longer identified as significant. 

Comparing this analysis with the current state of knowledge revealed that the 

typical water year has a residual impact on the CRB because of the slow response of soil 

moisture.  The quasi-decadal oscillation (QDO) observed in the precipitation data was 

shown to lead the QDO phase observed in the level of the Great Salt Lake by three years 

(Wang et al, 2010b).  This showed that the total surface hydrology response can have 

around three years to respond to precipitation.  Also, there is a quasi-decadal oscillation 

in the Pacific Ocean (PQDO) which has a three year lead time correlation with the 

precipitation QDO.  The significant PQDO region is centered over the central tropical 

Pacific Ocean; basically the existing Niño4 region. 

Comparing the results from Task 2 with the current knowledge revealed that the 

water supply from a given water year is impacted by, on average, the previous two (2) 

water years.  The mechanism creating this connection is explained by the wintertime 

intensity of the EAJS and observed by the Hondo SST variability.  By the third water 
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year the impact of the Niño4 region and the mechanism transporting moist air from the 

tropical Pacific Ocean, becomes more significant than the Hondo mechanism.  Therefore 

the research completed by Task 2 identifies that there is a lagged relationship between the 

Hondo and the CRB which is likely related to basin characteristics.  The research also 

identified that the CRB is also influenced by the PQDO at lag times of around 3 years. 

The final task, answering question No. 3, used the Hondo as a basis for 

forecasting streamflow in the CRB at 0, 1, and 2-year lag times.  The results of this task 

showed that the best forecast skill results appear when using the inverse distance weight 

kernel, based on the January – March (JFM) Hondo values, to resample the training data 

set. Tests also showed that forecasts are sensitive to which historical data are selected as 

the training set to create the forecasts.  The analysis results show that the long-lead water 

supply forecasts are improved by applying the weighted forecast technique. 

6.2 Recommendations for Future Work 

The research presented here provides a foundation for two separate but related 

fields in water resource engineering.  The first is related to the work presented in 

Chapters 3 and 4: improving the understanding of climate drivers for a given watershed.  

The results obtained in these two chapters demonstrate there are atmospheric phenomena 

linked to, and lagging behind, ocean temperature cycles.  In the case of the CRB, the 

changes in streamflow were also connected to the atmospheric phenomena and, therefore, 

to changes in the Pacific Ocean.  It is highly unlikely that the connection between a large 

river watershed and the ocean is unique to the CRB. As a result, this analysis approach 

can be applied to any watershed located around the world in an effort to determine the 

connection between streamflow and large-scale climate variability.   
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Focusing solely on the CRB, future work can provide answers as to how the CRB 

is influenced by other climate cycles.  Existing research has identified a connection with 

the Atlantic Ocean, and yet the mechanism explaining this connection remains unclear.  

For the time being, the relationship remains solely based in statistics. 

The second field related to fusing inter-annual and inter-decadal climate 

variability to create long-lead water supply forecasts.  Much of the existing research has 

focused on the impact of the El Niño Southern Oscillation (or lack thereof) on the CRB.  

Chapter 4 demonstrated that the non-extreme years are also correlated and can represent 

an underlying climate driver apart from the extreme year.  Forecasting improvements 

attempted in Chapter 5 focused on building upon the CBRFC approach, by creating a 

forecast method capable of weighting the ESP output to create a new forecast method.  

More work can be done to improve forecasts further if other climate information is 

included (e.g. Hondo + other climate cycle), and if the approach is attached to a physical 

hydrologic model such as the ESP.  In other watershed basins, there may not be an 

“official” approach to forecasting.  In these regions, research into new forecasting models 

may need to be done based upon known climate states.  Climate based forecast methods, 

by virtue of being linked to observed climate states, stand a better chance of adapting to 

non-stationary climate patterns of the future. 
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APPENDIX 1 

DATA AND ANALYSIS CODE 

 

A1.1 Chapter 4 Data 

A1.1.1 SST Data Used In Rank Sum Testing 

3-mo JAS JJA MJJ AMJ MAM FMA JFM DJF NDJ OND 

1952 -9.16 -15.73 -16.08 -16.66 -15.77 -13.43 3.69 -4.83 -10.86 -10.21 

1953 22.04 7.17 1.26 -5.54 -13.93 -13.77 17.18 15.08 14.09 10.05 

1954 19.92 -23.24 -21.06 -22.40 -26.56 -24.12 14.24 8.58 7.18 1.24 

1955 28.07 -20.57 -21.81 -22.88 -20.24 -19.28 17.42 17.02 14.74 13.49 

1956 33.00 -25.41 -27.65 -20.85 -24.07 -33.12 37.34 38.47 28.65 24.18 

1957 15.29 -19.75 -15.57 -11.43 -6.50 -10.96 13.40 13.61 4.86 4.81 

1958 -22.22 -18.64 -19.00 -14.31 -12.39 0.41 -8.19 -11.97 -10.04 -12.34 

1959 0.22 12.35 19.38 20.04 17.55 11.78 -14.27 -19.87 -19.62 -12.63 

1960 -0.30 2.11 -1.14 -0.49 -0.12 4.90 -8.19 -6.25 -3.76 0.61 

1961 10.73 -10.28 -9.32 -5.33 -7.73 -8.39 5.41 4.50 2.43 1.63 

1962 17.75 -12.05 -11.15 -9.82 -10.96 -10.33 9.23 9.13 2.60 3.06 

1963 15.99 -39.16 -39.23 -31.89 -21.66 -16.97 13.82 15.80 18.81 17.74 

1964 -6.04 -13.98 -8.59 -0.20 8.02 11.32 -10.03 -5.08 -0.85 -6.38 

1965 7.11 15.53 6.33 2.77 -3.69 -10.47 9.35 13.63 15.82 13.81 

1966 -29.72 -0.21 1.74 9.57 9.77 16.67 -16.06 -17.52 -20.89 -26.00 

1967 -12.57 25.72 13.24 4.95 4.41 6.42 -4.65 -1.11 -3.37 -6.10 

1968 13.97 11.22 1.56 -2.09 0.72 7.83 -12.63 -6.38 -3.91 -0.09 

1969 -19.31 3.90 16.45 19.28 21.59 16.70 -9.91 -0.07 8.37 5.14 

1970 -3.47 28.05 25.45 16.66 10.29 10.72 -15.40 -18.48 -9.54 4.50 

1971 16.37 7.15 4.62 1.98 -0.21 -5.94 10.96 17.62 19.86 20.11 

1972 14.98 -14.49 -18.28 -21.80 -16.50 -25.43 27.76 28.89 17.67 10.88 

1973 -27.53 -15.99 -7.88 2.10 11.97 9.71 -9.08 -11.70 -20.12 -17.46 

1974 43.08 10.31 8.14 1.83 -5.43 -15.46 21.90 24.88 24.04 26.33 

1975 17.68 -32.44 -30.83 -22.79 -13.22 -7.19 9.19 11.24 11.42 3.03 

1976 28.37 -20.60 -16.65 -20.34 -19.49 -30.66 35.90 38.68 30.13 22.83 
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1977 -14.54 -19.51 -17.51 -14.78 -11.20 -13.69 9.39 -8.92 -16.24 -16.83 

1978 -24.44 30.88 31.49 20.01 6.66 1.74 -10.29 -26.63 -30.13 -28.03 

1979 -22.34 20.14 20.00 27.03 30.28 25.98 -17.14 -15.63 -17.57 -12.83 

1980 -32.83 15.38 10.39 7.41 2.29 11.16 -17.97 -25.44 -27.12 -31.26 

1981 -12.27 34.75 38.73 34.19 29.30 25.11 -20.68 -24.57 -22.94 -15.98 

1982 -17.05 27.06 25.33 20.55 16.38 12.10 -16.37 -28.25 -36.09 -30.54 

1983 -63.02 23.23 22.51 18.90 18.29 16.28 -19.80 -23.72 -28.82 -34.24 

1984 -17.14 65.25 64.79 65.31 65.15 64.63 -54.90 -49.18 -47.28 -38.34 

1985 -22.22 20.46 24.96 19.68 11.07 4.81 -3.60 -5.03 -10.59 -14.71 

1986 -9.04 16.36 11.42 0.19 -4.98 -12.30 6.07 -3.56 -9.66 -12.10 

1987 -33.44 -4.86 1.21 5.50 9.34 16.25 -17.81 -22.67 -25.82 -27.74 

1988 -16.77 16.58 17.79 18.76 20.79 26.31 -26.28 -22.49 -18.44 -13.80 

1989 32.54 2.55 -9.19 -12.09 -11.74 -8.61 14.20 22.41 26.48 28.96 

1990 8.37 -26.80 -28.47 -27.37 -15.17 -7.93 7.80 7.31 8.42 13.94 

1991 6.22 1.55 4.93 1.24 0.92 5.72 -11.15 -7.10 -1.30 -0.45 

1992 -23.73 -0.17 9.04 12.60 4.79 -0.67 7.77 7.49 12.16 2.27 

1993 -23.80 31.33 31.36 33.32 41.22 54.54 -55.03 -47.37 -35.20 -31.93 

1994 -21.25 21.31 23.52 30.84 30.24 32.29 -32.45 -21.25 -11.90 -5.18 

1995 -24.40 17.20 12.62 12.19 13.05 15.59 -20.67 -18.91 -20.37 -20.47 

1996 17.09 19.07 16.62 24.19 24.71 20.21 -9.54 -10.11 4.82 10.76 

1997 -10.77 0.10 11.50 12.74 10.60 17.68 -15.62 -9.91 5.08 2.80 

1998 -34.13 8.77 6.93 5.75 7.06 20.10 -35.92 -35.93 -29.91 -28.76 

1999 53.00 27.03 25.08 32.07 29.53 15.58 1.81 13.24 21.60 29.81 

2000 55.24 -62.67 -61.68 -64.84 -62.89 -69.88 69.87 69.00 63.00 60.10 

2001 32.00 -55.50 -54.24 -50.52 -48.03 -48.54 49.64 50.65 44.05 34.38 

2002 41.96 -30.99 -27.57 -31.51 -35.96 -41.09 48.51 51.57 51.16 45.49 

2003 -3.50 -44.83 -50.89 -53.25 -48.09 -29.71 22.24 20.79 22.40 21.77 

2004 6.00 5.34 5.38 1.51 0.55 -4.63 9.53 10.31 12.49 20.69 

 

6-mo AMJJAS MAMJJA FMAMJJ JFMAMJ DJFMAM NDJFMA ONDJFM 

1952 -18.49 -17.32 -17.86 -13.95 -11.04 -3.88 -4.30 

1953 4.04 -1.43 -6.22 -11.54 -14.70 -15.79 15.47 
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1954 -23.58 -27.00 -24.86 -20.83 -18.57 -15.51 7.28 

1955 -17.98 -21.03 -22.50 -21.15 -20.21 -19.56 17.74 

1956 -21.91 -26.88 -32.26 -33.00 -37.87 -36.35 35.52 

1957 -17.55 -16.57 -16.90 -13.66 -12.72 -10.46 11.61 

1958 -22.71 -18.41 -11.63 -4.19 1.50 8.07 -12.48 

1959 15.37 16.68 19.70 20.82 20.09 17.46 -16.26 

1960 -1.59 0.78 1.91 4.32 2.01 4.43 -5.22 

1961 -4.72 -7.87 -8.70 -5.44 -5.74 -3.73 1.78 

1962 -7.75 -12.29 -13.09 -10.95 -10.30 -6.57 6.55 

1963 -34.13 -32.60 -30.39 -25.32 -19.91 -16.63 15.18 

1964 -8.68 -2.57 1.08 5.03 7.97 8.97 -10.16 

1965 11.45 6.08 -0.90 -3.87 -10.42 -14.65 15.45 

1966 1.74 7.05 10.76 14.89 17.21 23.62 -26.49 

1967 17.88 14.63 10.82 7.10 1.94 1.12 -1.04 

1968 10.41 7.94 6.17 6.88 8.93 9.69 -4.96 

1969 14.10 16.13 16.54 14.23 10.90 5.41 -0.29 

1970 25.95 21.30 19.12 17.29 17.26 15.26 -11.15 

1971 5.91 2.85 -1.13 -5.53 -11.83 -16.29 19.31 

1972 -16.98 -16.68 -22.87 -25.76 -23.99 -22.33 22.34 

1973 -6.71 -3.13 -0.04 7.46 13.86 17.36 -15.15 

1974 2.12 1.04 -2.79 -11.86 -21.00 -26.85 29.32 

1975 -31.35 -25.64 -22.72 -18.51 -16.08 -12.80 9.36 

1976 -19.69 -21.77 -26.08 -31.05 -32.74 -34.24 32.03 

1977 -17.26 -16.24 -15.45 -12.09 -3.65 1.68 -7.76 

1978 27.47 20.33 18.36 14.65 17.82 21.12 -27.19 

1979 28.70 26.79 26.72 25.41 24.42 22.23 -16.97 

1980 13.94 9.28 11.40 13.14 15.58 20.73 -27.99 

1981 37.92 37.45 36.50 30.17 32.74 30.62 -27.00 

1982 22.55 20.19 21.00 20.21 21.37 24.07 -26.63 

1983 24.60 20.61 19.38 20.32 21.51 21.74 -26.88 

1984 71.62 70.21 70.22 67.76 65.32 59.86 -50.13 

1985 19.18 17.80 16.22 13.17 10.01 9.65 -10.10 

1986 11.92 3.01 -1.73 -4.90 -3.94 -4.24 0.58 
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1987 0.58 4.08 8.35 11.28 18.19 24.38 -28.43 

1988 19.54 23.29 25.21 25.61 28.61 26.37 -24.06 

1989 0.80 -3.50 -8.87 -14.67 -17.94 -19.92 23.20 

1990 -24.17 -21.78 -20.54 -17.70 -9.82 -7.96 10.63 

1991 -6.89 1.12 6.42 6.09 5.04 7.02 -6.97 

1992 -0.44 3.03 5.71 3.54 -1.43 -7.51 7.37 

1993 34.38 38.71 46.35 49.98 51.59 48.78 -45.24 

1994 27.61 29.85 31.58 37.34 34.48 29.57 -24.25 

1995 17.20 18.20 16.56 16.55 16.62 19.42 -22.19 

1996 25.61 22.86 19.99 18.46 16.95 8.51 -0.53 

1997 -1.37 5.78 14.87 13.57 10.41 6.09 -5.21 

1998 4.65 8.26 13.96 20.62 23.02 28.12 -35.37 

1999 25.77 28.35 23.06 18.11 6.65 -6.06 20.83 

2000 -72.66 -70.91 -73.96 -73.89 -75.74 -75.26 73.25 

2001 -58.19 -56.34 -57.18 -54.90 -55.71 -55.53 50.21 

2002 -35.43 -35.67 -37.12 -44.53 -47.93 -50.75 53.08 

2003 -55.98 -51.18 -43.56 -40.85 -35.41 -29.24 25.41 

2004 3.18 3.14 1.33 -3.85 -3.34 -9.27 16.91 

 

A1.2 Chapter 3 Analysis Code 

A1.2.1 Rank Sum Test 

function [rsum]=SOI3 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
rsum=zeros(29,10); 
for month=1:10 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        soi_col = mean([soi_col1,soi_col2,soi_col3],2); 
        pindices=find(soi_col>=0); 
        nindices=find(soi_col<0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
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function [rsum]=SOI6 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
rsum=zeros(29,7); 
for month=1:7 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        soi_col4 = alldata(:,month+4); 
        soi_col5 = alldata(:,month+5); 
        soi_col6 = alldata(:,month+6); 
        soi_col = mean([soi_col1,soi_col2,soi_col3,soi_col4,soi_col5,soi_col6],2); 
        pindices=find(soi_col>=0); 
        nindices=find(soi_col<0);         
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=PDO3 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
rsum=zeros(29,10); 
for month=1:10 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        pdo_col1 = alldata(:,month+25); 
        pdo_col2 = alldata(:,month+26); 
        pdo_col3 = alldata(:,month+27); 
        pdo_col = mean([pdo_col1,pdo_col2,pdo_col3],2); 
        pindices=find(pdo_col>=0); 
        nindices=find(pdo_col<0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=PDO6 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
rsum=zeros(29,7); 
for month=1:7 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        pdo_col1 = alldata(:,month+25); 
        pdo_col2 = alldata(:,month+26); 
        pdo_col3 = alldata(:,month+27); 
        pdo_col4 = alldata(:,month+28); 
        pdo_col5 = alldata(:,month+29); 
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        pdo_col6 = alldata(:,month+30); 
        pdo_col = mean([pdo_col1,pdo_col2,pdo_col3,pdo_col4,pdo_col5,pdo_col6],2); 
        pindices=find(pdo_col>=0); 
        nindices=find(pdo_col<0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=NAO3 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
rsum=zeros(29,10); 
for month=1:10 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        nao_col1 = alldata(:,month+13); 
        nao_col2 = alldata(:,month+14); 
        nao_col3 = alldata(:,month+15); 
        nao_col = mean([nao_col1,nao_col2,nao_col3],2); 
        pindices=find(nao_col>=0); 
        nindices=find(nao_col<0);  
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=NAO6 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
rsum=zeros(29,7); 
for month=1:7 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        nao_col1 = alldata(:,month+13); 
        nao_col2 = alldata(:,month+14); 
        nao_col3 = alldata(:,month+15); 
        nao_col4 = alldata(:,month+16); 
        nao_col5 = alldata(:,month+17); 
        nao_col6 = alldata(:,month+18); 
        nao_col = mean([nao_col1,nao_col2,nao_col3,nao_col4,nao_col5,nao_col6],2); 
        pindices=find(nao_col>=0); 
        nindices=find(nao_col<0);         
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=AMO3 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
rsum=zeros(29,10); 
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for month=1:10 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        amo_col1 = alldata(:,month+66); 
        amo_col2 = alldata(:,month+67); 
        amo_col3 = alldata(:,month+68); 
        amo_col = mean([amo_col1,amo_col2,amo_col3],2); 
        pindices=find(amo_col>=0); 
        nindices=find(amo_col<0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=AMO6 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
rsum=zeros(29,7); 
for month=1:7 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        amo_col1 = alldata(:,month+66); 
        amo_col2 = alldata(:,month+67); 
        amo_col3 = alldata(:,month+68); 
        amo_col4 = alldata(:,month+69); 
        amo_col5 = alldata(:,month+70); 
        amo_col6 = alldata(:,month+71); 
        amo_col = mean([amo_col1,amo_col2,amo_col3,amo_col4,amo_col5,amo_col6],2); 
        pindices=find(amo_col>=0); 
        nindices=find(amo_col<0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SPb3 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
% Calculation of the SOI & PDO pos. versus the SOI pos. & PDO neg. 
rsum=zeros(29,10); 
for month=1:10 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        pdo_col1 = alldata(:,month+25); 
        pdo_col2 = alldata(:,month+26); 
        pdo_col3 = alldata(:,month+27); 
        soi_col = mean([soi_col1,soi_col2,soi_col3],2); 
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        pdo_col = mean([pdo_col1,pdo_col2,pdo_col3],2); 
        pindices=find(soi_col>=0 & pdo_col>=0); 
        nindices=find(soi_col>=0 & pdo_col<0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SPb6 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
% Calculation of the SOI & PDO pos. versus the SOI pos. & PDO neg. 
rsum=zeros(29,7); 
for month=1:7 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        soi_col4 = alldata(:,month+4); 
        soi_col5 = alldata(:,month+5); 
        soi_col6 = alldata(:,month+6); 
        pdo_col1 = alldata(:,month+25); 
        pdo_col2 = alldata(:,month+26); 
        pdo_col3 = alldata(:,month+27); 
        pdo_col4 = alldata(:,month+28); 
        pdo_col5 = alldata(:,month+29); 
        pdo_col6 = alldata(:,month+30); 
        soi_col = mean([soi_col1,soi_col2,soi_col3,soi_col4,soi_col5,soi_col6],2); 
        pdo_col = mean([pdo_col1,pdo_col2,pdo_col3,pdo_col4,pdo_col5,pdo_col6],2); 
        pindices=find(soi_col>=0 & pdo_col>=0); 
        nindices=find(soi_col>=0 & pdo_col<0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SPd3 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
% Calculation of the SOI & PDO neg. versus the SOI neg. & PDO pos. 
rsum=zeros(29,10); 
for month=1:10 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        pdo_col1 = alldata(:,month+25); 
        pdo_col2 = alldata(:,month+26); 
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        pdo_col3 = alldata(:,month+27); 
        soi_col = mean([soi_col1,soi_col2,soi_col3],2); 
        pdo_col = mean([pdo_col1,pdo_col2,pdo_col3],2); 
        pindices=find(soi_col<0 & pdo_col<0); 
        nindices=find(soi_col<0 & pdo_col>=0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SPd6 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
% Calculation of the SOI & PDO neg. versus the SOI neg. & PDO pos. 
rsum=zeros(29,7); 
for month=1:7 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        soi_col4 = alldata(:,month+4); 
        soi_col5 = alldata(:,month+5); 
        soi_col6 = alldata(:,month+6); 
        pdo_col1 = alldata(:,month+25); 
        pdo_col2 = alldata(:,month+26); 
        pdo_col3 = alldata(:,month+27); 
        pdo_col4 = alldata(:,month+28); 
        pdo_col5 = alldata(:,month+29); 
        pdo_col6 = alldata(:,month+30); 
        soi_col = mean([soi_col1,soi_col2,soi_col3,soi_col4,soi_col5,soi_col6],2); 
        pdo_col = mean([pdo_col1,pdo_col2,pdo_col3,pdo_col4,pdo_col5,pdo_col6],2); 
        pindices=find(soi_col<0 & pdo_col<0); 
        nindices=find(soi_col<0 & pdo_col>=0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SNb3 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
% Calculation of the SOI & NAO pos. versus the SOI pos. & NAO neg. 
rsum=zeros(29,10); 
for month=1:10 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
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        nao_col1 = alldata(:,month+13); 
        nao_col2 = alldata(:,month+14); 
        nao_col3 = alldata(:,month+15); 
        soi_col = mean([soi_col1,soi_col2,soi_col3],2); 
        nao_col = mean([nao_col1,nao_col2,nao_col3],2); 
        pindices=find(soi_col>=0 & nao_col>=0); 
        nindices=find(soi_col>=0 & nao_col<0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SNb6 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
% Calculation of the SOI & NAO pos. versus the SOI pos. & NAO neg. 
rsum=zeros(29,7); 
for month=1:7 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        soi_col4 = alldata(:,month+4); 
        soi_col5 = alldata(:,month+5); 
        soi_col6 = alldata(:,month+6); 
        nao_col1 = alldata(:,month+13); 
        nao_col2 = alldata(:,month+14); 
        nao_col3 = alldata(:,month+15); 
        nao_col4 = alldata(:,month+16); 
        nao_col5 = alldata(:,month+17); 
        nao_col6 = alldata(:,month+18); 
        soi_col = mean([soi_col1,soi_col2,soi_col3,soi_col4,soi_col5,soi_col6],2); 
        nao_col = mean([nao_col1,nao_col2,nao_col3,nao_col4,nao_col5,nao_col6],2); 
        pindices=find(soi_col>=0 & nao_col>=0); 
        nindices=find(soi_col>=0 & nao_col<0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SNd3 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
% Calculation of the SOI & nao neg. versus the SOI neg. & nao pos. 
rsum=zeros(29,10); 
for month=1:10 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
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        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        nao_col1 = alldata(:,month+13); 
        nao_col2 = alldata(:,month+14); 
        nao_col3 = alldata(:,month+15); 
        soi_col = mean([soi_col1,soi_col2,soi_col3],2); 
        nao_col = mean([nao_col1,nao_col2,nao_col3],2); 
        pindices=find(soi_col<0 & nao_col<0); 
        nindices=find(soi_col<0 & nao_col>=0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SNd6 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
% Calculation of the SOI & nao neg. versus the SOI neg. & nao pos. 
rsum=zeros(29,7); 
for month=1:7 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        soi_col4 = alldata(:,month+4); 
        soi_col5 = alldata(:,month+5); 
        soi_col6 = alldata(:,month+6); 
        nao_col1 = alldata(:,month+13); 
        nao_col2 = alldata(:,month+14); 
        nao_col3 = alldata(:,month+15); 
        nao_col4 = alldata(:,month+16); 
        nao_col5 = alldata(:,month+17); 
        nao_col6 = alldata(:,month+18); 
        soi_col = mean([soi_col1,soi_col2,soi_col3,soi_col4,soi_col5,soi_col6],2); 
        nao_col = mean([nao_col1,nao_col2,nao_col3,nao_col4,nao_col5,nao_col6],2); 
        pindices=find(soi_col<0 & nao_col<0); 
        nindices=find(soi_col<0 & nao_col>=0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SAb3 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
% Calculation of the SOI & AMO pos. versus the SOI pos. & AMO neg. 
rsum=zeros(29,10); 
for month=1:10 
    for station=1:29 
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        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        amo_col1 = alldata(:,month+66); 
        amo_col2 = alldata(:,month+67); 
        amo_col3 = alldata(:,month+68); 
        soi_col = mean([soi_col1,soi_col2,soi_col3],2); 
        amo_col = mean([amo_col1,amo_col2,amo_col3],2); 
        pindices=find(soi_col>=0 & amo_col>=0); 
        nindices=find(soi_col>=0 & amo_col<0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SAb6 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
% Calculation of the SOI & AMO pos. versus the SOI pos. & AMO neg. 
rsum=zeros(29,7); 
for month=1:7 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        soi_col4 = alldata(:,month+4); 
        soi_col5 = alldata(:,month+5); 
        soi_col6 = alldata(:,month+6); 
        amo_col1 = alldata(:,month+66); 
        amo_col2 = alldata(:,month+67); 
        amo_col3 = alldata(:,month+68); 
        amo_col4 = alldata(:,month+69); 
        amo_col5 = alldata(:,month+70); 
        amo_col6 = alldata(:,month+71); 
        soi_col = mean([soi_col1,soi_col2,soi_col3,soi_col4,soi_col5,soi_col6],2); 
        amo_col = mean([amo_col1,amo_col2,amo_col3,amo_col4,amo_col5,amo_col6],2); 
        pindices=find(soi_col>=0 & amo_col>=0); 
        nindices=find(soi_col>=0 & amo_col<0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SAd3 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
% Calculation of the SOI & AMO neg. versus the SOI neg. & AMO pos. 
rsum=zeros(29,10); 
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for month=1:10 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        amo_col1 = alldata(:,month+66); 
        amo_col2 = alldata(:,month+67); 
        amo_col3 = alldata(:,month+68); 
        soi_col = mean([soi_col1,soi_col2,soi_col3],2); 
        amo_col = mean([amo_col1,amo_col2,amo_col3],2); 
        pindices=find(soi_col<0 & amo_col<0); 
        nindices=find(soi_col<0 & amo_col>=0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SAd6 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
% Calculation of the SOI & AMO neg. versus the SOI neg. & AMO pos. 
rsum=zeros(29,7); 
for month=1:7 
    for station=1:29 
        flow_col= alldata(:,station+37); 
        soi_col1 = alldata(:,month+1); 
        soi_col2 = alldata(:,month+2); 
        soi_col3 = alldata(:,month+3); 
        soi_col4 = alldata(:,month+4); 
        soi_col5 = alldata(:,month+5); 
        soi_col6 = alldata(:,month+6); 
        amo_col1 = alldata(:,month+66); 
        amo_col2 = alldata(:,month+67); 
        amo_col3 = alldata(:,month+68); 
        amo_col4 = alldata(:,month+69); 
        amo_col5 = alldata(:,month+70); 
        amo_col6 = alldata(:,month+71); 
        soi_col = mean([soi_col1,soi_col2,soi_col3,soi_col4,soi_col5,soi_col6],2); 
        amo_col = mean([amo_col1,amo_col2,amo_col3,amo_col4,amo_col5,amo_col6],2); 
        pindices=find(soi_col<0 & amo_col<0); 
        nindices=find(soi_col<0 & amo_col>=0); 
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SST3 
[alldata]=xlsread('C:\Matlab\52-ALL.xls'); 
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rsum=zeros(29,10); 
for month=1:10 
    for station=1:29 
        flow_col = alldata(:,station+37); 
        sst3_col = alldata(:,month+78); 
        pindices=find(sst3_col>=0); 
        nindices=find(sst3_col<0);         
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
function [rsum]=SST6 
[alldata,tflow]=xlsread('C:\Matlab\52-ALL.xls'); 
rsum=zeros(29,7); 
for month=1:7 
    for station=1:29 
        flow_col = alldata(:,station+37); 
        sst6_col = alldata(:,month+88); 
        pindices=find(sst6_col>=0); 
        nindices=find(sst6_col<0);         
        rsum(station, month)=ranksum(flow_col(pindices),flow_col(nindices)); 
    end 
end 
 
 

A1.2.2 SVD Analysis And Mapping 

%---------------------------------------------------------------------------------------- 
%Code reads in SST data and then removes the -9999 values which denote land 
temps = xlsread('C:\Matlab\SVD\SST-RAW.xls'); 
temps = temps(3:end,4:56); 
 
m = 0; 
 
for i = -70:2:70;           % Latitude 
    for j = 120:2:280;      % Longitude 
       m = m +1; 
        b(m,:) = [i j]; 
    end 
     
end 
 
remv_rows = find(temps(:,1) == -9999); 
%all_temps(remv_rows,:) = []; 
temps(remv_rows,:) = []; 
b(remv_rows,:) = []; 
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all_temps = [b temps]; 
 
col = size(temps,2); 
 
% Take row average, by adding the ',2' inside the parenthesis. 
round1 = mean(temps,2);              
 
%Standardize each row (hence the ',2' term again). The middle term 
% (e.g. '0') tells the function to use n-1 when standardizing. 
round1st = std(temps,0,2);       
 
for i = 1:col 
round2(:,i) = temps(:,i) - round1;  % Substruct each row element to row mean 
end 
round2mn = mean(round2,2);       
round2st = std(round2,0,2);     % Get standard deviation 
 
for j = 1:col 
round3(:,j) = (round2(:,j)- round2mn)./round2st;    % Standardize  
end 
m 
round3(isnan(round3))=0; 
 
xlswrite('C:\MATLAB\SVD\SST_lat_long.xls',b);   % Write to excel file 
xlswrite('C:\MATLAB\SVD\std_sst.xls',roun3); 
 
%--------------------------------------------------------------------------------------------- 
% Runs SVD and calculates the correlation values from the SVD results. 
% Create a Matlab directory in C 
% C:\Matlab 
% Or use a different directory. However lines 37 52 53 115-118  
% needs to be changed accordingly 
 
% Other parameters that can be changed on lines... 
% Lines 12, 13, 146, 147, 219, 220 
 
clc 
clear 
 
temp1 = xlsread('C:\matlab\SVD95\SVD-0-JAS\Std_SST.xls');  %import standardized 
ssts.  
str1 = xlsread('C:\matlab\std-streamflow.xls');   %inport standardized sst 
[stations years] = size(str1); %input('Enter the number of years: '); 
t = temp1'; 
s = str1'; 
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%calculating covariance 
covar_ts = (1/years) * t' * s;   
    
% svd calculation 
[left, eigs, right] = svd(covar_ts);   
 
% Get the number of modes by calculating 
% the square covariance and check for values >10 
eigenvalues = diag(eigs); 
square_eig = eigenvalues.^2;            %squares of the values 
sum_sq_eig = sum(square_eig) ;          %sum of the squares 
square_cov = square_eig./sum_sq_eig;    %square covariance 
sign_num = find(square_cov >= 0.11);    %find values greater than 10% 
sign_num_val = square_cov(sign_num);                                    
num_modes = numel(sign_num);            %How many values greater than 10% 
 
% Export square covariance data to an excel file 
 
xlswrite('C:\matlab\SVD95\SVD-0-JAS\square_covar.xls',square_cov); 
 
% Getting temporal expansion  
for i = 1:num_modes; %num_modes; 
    a = left(:,i); 
    left_exp = t*a;                     %Create a matrix of left 
    left_exp_mat(:,i) = left_exp;        %left temporal expansions 
     
    b = right(:,i); 
    right_exp = s*b;                    %create a matrix of right 
    right_exp_mat(:,i) = right_exp;     %right temporal expansions 
end 
 
% Export temporal expansions matrices to excel files 
 
xlswrite('C:\matlab\SVD95\SVD-0-JAS\right_temp_expan.xls',right_exp_mat); 
xlswrite('C:\matlab\SVD95\SVD-0-JAS\left_temp_expan.xls',left_exp_mat); 
 
% Getting Left heterogenous correlation 
 
sign_p = input('Significance (in decimal, eg 0.95 for 95%): '); 
sign_p = 1 - sign_p; 
 
[rrt cct] = size(t); 
[rrs ccs] = size(s); 
 
for n = 1:num_modes; 
    rht = right_exp_mat(:,n); 
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    for m = 1:cct; 
         
    left_heter = [t(:,m) rht];    % left heterogenous correlations figure 
                                            
    [r,p] = corrcoef(left_heter); %Compute sample correlation and p-values. 
    [k,l] = find(p<sign_p);         % Find significant correlations. 
     pp = [k,l];                  % Display their (row,col) indices. 
     if isempty(pp) 
     rl = 0; 
    else 
     rl = r(1,2); 
     end  
    bbb(n,m) = rl; 
    r = r(1,2); 
    all_left(n,m) = r; 
     end 
 
end 
    left_corr_values = bbb'; 
    all_left_correl = all_left'; 
     
     
 %Getting Right heterogeneous correlation 
  
 for u = 1:num_modes;  
    lht = left_exp_mat(:,u); 
     
    for v = 1:ccs; 
         
    right_heter = [s(:,v) lht];    % right heterogenous correlations figure 
                                            
    [rr,pr] = corrcoef(right_heter); %Compute sample correlation and p-values. 
    [kr,lr] = find(pr<sign_p);         % Find significant correlations. 
     ppr = [kr,lr];                  % Display their (row,col) indices. 
     if isempty(ppr) 
     rrs = 0; 
    else 
     rrs = rr(1,2); 
     end  
    bbbr(u,v) = rrs; 
    rr = rr(1,2); 
    corr_valz(u,v) = rr; 
     end 
 
end 
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    right_corr_values = bbbr'; 
    all_corr_valz = corr_valz'; 
     
 %Export significant correlation values to excel files 
       
      xlswrite('C:\matlab\SVD95\SVD-0-JAS\stream_correl.xls',right_corr_values);   
      xlswrite('C:\matlab\SVD95\SVD-0-JAS\SST_correl.xls',left_corr_values);     
      xlswrite('C:\matlab\SVD95\SVD-0-JAS\all_stream_correl.xls',all_corr_valz); 
      xlswrite('C:\matlab\SVD95\SVD-0-JAS\all_sst_correl.xls',all_left_correl); 
       
       
% Information to display 
num_mode_val = 100.* sign_num_val';  
mode_total = sum(num_mode_val); 
num_m_val = [num_modes mode_total]; 
 
fprintf('There are %3.0f modes for this analysis and account for %3.0f percent. 
\n',num_m_val) 
display(['The square covariance fractions over 10% are ' int2str(num_mode_val) ' 
percent.']) 
disp(' ')    
 
%MAPPING SECTION 
%BELOW MAPPING SECTION. 
looper = 1; 
while looper == 1;          % Loop to view figures of different modes. 
  
% Select what to view, Contour of SST or Streamflow Correlations 
 
graph2view = input('Which view do you want(sst = 1 or runoff = 2)? ');  
if graph2view == 2     
nm = input('Enter the mode to view: '); 
str_latlong = xlsread('C:\matlab\stream_lat_long.xls');%Stream Gauge latitude and 
longitude  
snlat = str_latlong(:,1);                    %xlsread('LatQ.xls'); % 
snlong = str_latlong(:,2);                   %xlsread('LongQ.xls'); %  
latlim = [ 25 50];                          % Latitude map limits  
lonlim = [-125 -100];                       % longitude map limits 
figure 
ax = usamap(latlim,lonlim); 
axis off 
states = shaperead('usastatehi',... 
'UseGeoCoords', true, 'BoundingBox', [lonlim', latlim']); 
faceColors = makesymbolspec('Polygon',... 
{'INDEX', [1 numel(states)], ... 
'FaceColor', white(numel(states))}); %polcmap will assign random colors for states 
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geoshow(ax, states , 'SymbolSpec',faceColors) 
snvalues = right_corr_values; 
array1 = [snlat snlong snvalues(:,nm)]; 
[rows colms]=size(array1); 
for i = 1:rows; 
    if array1(i,3)>0 
        snotlats = array1(i,1); 
        snotlongs = array1(i,2); 
        plotm(snotlats,snotlongs,'r.') 
         
    elseif array1(i,3)<0 
        snotlats = array1(i,1); 
        snotlongs = array1(i,2); 
        plotm(snotlats,snotlongs,'b.')    
    else 
        snotlats = array1(i,1); 
        snotlongs = array1(i,2); 
        plotm(snotlats,snotlongs,'k.')  
    end 
end 
 
for k = 1:numel(states) 
labelPointIsWithinLimits =... 
latlim(1) < states(k).LabelLat &&... 
latlim(2) > states(k).LabelLat &&... 
lonlim(1) < states(k).LabelLon &&... 
lonlim(2) > states(k).LabelLon; 
if labelPointIsWithinLimits 
textm(states(k).LabelLat,... 
states(k).LabelLon, states(k).Name, 'HorizontalAlignment', 'center') 
end 
 
end 
 
% SSTs contour Mapping 
 
elseif graph2view ==1           %contours 
     
% Load the data and extract the (x,y,z) information: 
 
lat_long = xlsread('C:\Matlab\SVD95\SVD-0-JAS\SST_lat_long.xls'); % SST latitude 
and longitude 
x = lat_long(:,2); %x = xlsread('Lon.xls'); %  
y = lat_long(:,1); %y = xlsread('Lat.xls'); % % % 
nn = input('Enter the mode to view: '); 
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z = all_left_correl(:,nn); 
% Determine the minimum and the maximum x and y values: 
xmin = min(x); ymin = min(y); 
xmax = max(x); ymax = max(y);  
% Define the resolution of the grid: 
xres=17; 
yres=9; 
% Define the range and spacing of the x- and y-coordinates, 
% and then fit them into X and Y 
xv = linspace(xmin, xmax, xres); 
yv = linspace(ymin, ymax, yres); 
[Xinterp,Yinterp] = meshgrid(xv,yv);  
% Calculate Z in the X-Y interpolation space, which is an  
% evenly spaced grid: 
[xi,yi,Zinterp] = griddata(x,y,z,Xinterp,Yinterp);  
 
load coast 
latlim = [ -33 65];                 % SST area map latitude limit 
lonlim =[120 -80] ;                 % SST area map longitude limit 
figure 
worldmap(latlim,lonlim); 
axis off 
patchm(lat,long, 'k') %plotm patchm 
 
[c,h] = contourfm(yi,xi,Zinterp,-0.6:0.2:0.6);  
contourcmap(0.3,'jet','colorbar','on','location','horizontal') 
load('MyColormaps','sstmap') 
set(gcf,'Colormap',sstmap) 
 
h1 = clabelm(c,h); 
else 
    disp('Not an acceptable choice.') 
end 
disp(' ') 
looper = input('Do you want to print another figure? (yes = 1, no = 0)'); 
end 
disp(' ') 
disp('I guess you are done for now...') 
 
%------------------------------------------------------------ 
%array used to define the MyColormaps array called in the mapping section 
sstmap = [1 1 0; 0 1 1; 0 0 1; 0 0.502 1; 1 1 1; … 
    1 1 1; 1 0 0; 0.6588 0 0; 0.5922 0 0.2941; 0.502 0 0.502]; 
save MyColormaps sstmap 
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A1.3 Chapter 4 Analysis Code 

A1.3.1 NetCDF Processing Code in Matlab 

%Code to read and process the .nc data. 
addpath('C:\Program Files (x86)\MATLAB\R2009a 
Student\toolbox\matlab\matlab_netCDF_OPeNDAP') 
addpath('C:\Program Files (x86)\MATLAB\R2009a Student\toolbox\matlab\mexnc') 
addpath('C:\Program Files (x86)\MATLAB\R2009a Student\toolbox\matlab\snctools') 
 
%Step 1. Read in the NetCDF files by grabbing only the correct  
%level, Lat, and Lon fields 
%NOTE:  NetCDF files are 0-based (e.g first 'column' index is 0 not 1) 
%is actually 0, not 1. 
 
%------------------------------------------------------------------------- 
%Manual input region 
east = 280; 
west = 120; 
north = 70; 
south = -30; %use negative numbers to denote lats below the equator 
gph_level = 500; 
uwnd_level = 200; 
mon_int = 3; %This defines how manth months are going to be averaged 
%------------------------------------------------------------------------- 
 
level = nc_varget('hgt.mon.mean.nc','level'); 
lat = nc_varget('hgt.mon.mean.nc','lat'); 
lon = nc_varget('hgt.mon.mean.nc','lon'); 
 
glev = find(level(:,1) == gph_level); %Specifies the 500mb level 
wlev = find(level(:,1) == uwnd_level); %Specifies the 200mb level 
 
lat_max = find(lat(:,1) == south); %returns northern most lat value 
lat_min = find(lat(:,1) == north); %returns southern most lat value 
 
lon_max = find(lon(:,1) == east); %returns eastern most lon value 
lon_min = find(lon(:,1) == west); %returns western most lon value 
 
gph = nc_varget('hgt.mon.mean.nc','hgt',[0 glev lat_min lon_min],... 
    [-1 1 (lat_max-lat_min+1) (lon_max-lon_min+1)]); 
 
uwnd = nc_varget('uwnd.mon.mean.nc','uwnd',[0 wlev lat_min lon_min],... 
    [-1 1 (lat_max-lat_min+1) (lon_max-lon_min+1)]); 
 
slp = nc_varget('slp.mon.mean.nc','slp',[0 lat_min lon_min],... 
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    [-1 (lat_max-lat_min+1) (lon_max-lon_min+1)]); 
 
% Reorganize the data to make it so that it is a 2D matrix.  
% Such that: Rows = locations, Columns = Time. 
p_gph = permute(gph,[2 3 1]); p_uwnd = permute(uwnd,[2 3 1]);  
p_slp = permute(slp,[2 3 1]); 
 
sizeg = size(p_gph); sizeu = size(p_uwnd); sizes = size(p_slp); 
 
r_gph = reshape(p_gph,(sizeg(1)*sizeg(2)),sizeg(3)); 
r_uwnd = reshape(p_uwnd,(sizeu(1)*sizeu(2)),sizeu(3)); 
r_slp = reshape(p_slp,(sizes(1)*sizes(2)),sizes(3)); 
 
a = size(r_gph); b = size(r_uwnd); bb = size(r_slp); 
 
%Standardize the values of the HGT and UWND datasets based upon location 
%(i.e. rows of the 2D array). 
%formula: std value = (value - mean(row))/std(row); 
g500 = zeros(a(1),a(2)); 
for yr = 1:a(2)  
    for loc = 1:a(1) 
g500(loc,yr) = (r_gph(loc,yr) - mean(r_gph(loc,:)))/std(r_gph(loc,:)); 
    end 
end 
 
u200 = zeros(b(1),b(2)); 
for yr = 1:b(2)  
    for loc = 1:b(1) 
u200(loc,yr) = (r_uwnd(loc,yr) - mean(r_uwnd(loc,:)))/std(r_uwnd(loc,:)); 
    end 
end 
 
slp0 = zeros(bb(1),bb(2)); 
for yr = 1:bb(2)  
    for loc = 1:bb(1) 
slp0(loc,yr) = (r_slp(loc,yr) - mean(r_slp(loc,:)))/std(r_slp(loc,:)); 
    end 
end 
%------------------------------------- 
%Pre-Analysis Calculations 
%------------------------------------- 
 
%To create lagged HGT and UWND data, similar to the SST data already used, 
%need to create 3-month average values for each year.  The output of this 
%step should be a single value for each year in the data record. 
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%Create the 3-month average for each year for the HGT data: JFM - OND 
agph_m = zeros(length(g500),62,10); 
for yr = 1:62 
    for mon = 1:10 
agph_m(:,yr,mon) = mean(g500(:,12*yr-(12-mon):12*yr-(12-(mon+(mon_int-1)))),2); 
    end 
end 
c = size(agph_m); 
ragph_m = reshape(agph_m,(c(1)*c(2)),c(3)); 
 
%Create the 3-month average for each year for the HGT data: NDJ - DJF 
bgph_m = zeros(length(g500),61,2); 
for yr = 1:61 
    for month = 1:2 
bgph_m(:,yr,month) = mean(g500(:,12*yr-(12-month):12*yr-(12-(month+(mon_int-
1)))),2); 
    end 
end 
d = size(bgph_m); 
 
na_col = NaN(d(1),1,d(3)); 
bbgph_m = [na_col bgph_m]; 
dd = size(bbgph_m); 
rbgph_m = reshape(bbgph_m,(dd(1)*dd(2)),dd(3)); 
 
%Combine two matricies and then resape back into a 3D array such that: 
%Rows = locations; Columns = years; z = correspnding 3-month interval. 
comb_g = [ragph_m rbgph_m]; 
%take the DJF, NDJ, OND, SON, ASO inteval and move them to the front of the 
%combined matrix so that the final matrix is organized by water year and 
%not claendar year. 
comb_g2 = [comb_g(:,8:12) comb_g(:,1:7)]; 
gph_m = reshape(comb_g2,c(1),c(2),12); 
 
save gph_m gph_m 
%------------------------------------------------------------------------- 
%Repeat process to get 3-month average for each year for the UWND data 
%------------------------------------------------------------------------- 
awnd_m = zeros(length(u200),62,10); 
for yr = 1:62 
    for mon = 1:10 
awnd_m(:,yr,mon) = mean(u200(:,12*yr-(12-mon):12*yr-(12-(mon+(mon_int-1)))),2); 
    end 
end 
e = size(awnd_m); 
rawnd_m = reshape(awnd_m,(e(1)*e(2)),e(3)); 
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%Create the 3-month average for each year for the HGT data: NDJ - DJF 
bwnd_m = zeros(length(u200),61,2); 
for yr = 1:61 
    for month = 1:2 
bwnd_m(:,yr,month) = mean(u200(:,12*yr-(12-month):12*yr-(12-(month+(mon_int-
1)))),2); 
    end 
end 
f = size(bwnd_m); 
 
na_col = NaN(f(1),1,f(3)); 
bbwnd_m = [na_col bwnd_m]; 
ff = size(bbwnd_m); 
rbwnd_m = reshape(bbwnd_m,(ff(1)*ff(2)),ff(3)); 
 
%Combine two matricies and then resape back into a 3D array such that: 
%Rows = locations; Columns = years; z = correspnding 3-month interval. 
 
comb_w = [rawnd_m rbwnd_m]; 
%take the DJF, NDJ, OND, SON, ASO inteval and move them to the front of the 
%combined matrix so that the final matrix is organized by water year and 
%not claendar year. 
comb_w2 = [comb_w(:,8:12) comb_w(:,1:7)]; 
wnd_m = reshape(comb_w2,e(1),e(2),12); 
 
save wnd_m wnd_m 
 
%------------------------------------------------------------------------- 
%Repeat process to get 3-month average for each year for the SLP data 
%------------------------------------------------------------------------- 
aslp_m = zeros(length(slp0),62,10); 
for yr = 1:62 
    for mon = 1:10 
aslp_m(:,yr,mon) = mean(slp0(:,12*yr-(12-mon):12*yr-(12-(mon+(mon_int-1)))),2); 
    end 
end 
f = size(aslp_m); 
raslp_m = reshape(aslp_m,(f(1)*f(2)),f(3)); 
 
%Create the 3-month average for each year for the SLP data: NDJ - DJF 
bslp_m = zeros(length(slp0),61,2); 
for yr = 1:61 
    for month = 1:2 
bslp_m(:,yr,month) = mean(slp0(:,12*yr-(12-month):12*yr-(12-(month+(mon_int-
1)))),2); 
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    end 
end 
g = size(bslp_m); 
 
na_col = NaN(g(1),1,g(3)); 
bbslp_m = [na_col bslp_m]; 
gg = size(bbslp_m); 
rbslp_m = reshape(bbslp_m,(gg(1)*gg(2)),gg(3)); 
 
%Combine two matricies and then resape back into a 3D array such that: 
%Rows = locations; Columns = years; z = correspnding 3-month interval. 
 
comb_s = [raslp_m rbslp_m]; 
%take the DJF, NDJ, OND, SON, ASO inteval and move them to the front of the 
%combined matrix so that the final matrix is organized by water year and 
%not claendar year. 
comb_s2 = [comb_s(:,8:12) comb_s(:,1:7)]; 
slp_m = reshape(comb_s2,f(1),f(2),12); 
 
save slp_m slp_m 
 
%--------------------------------------------------------------- 
%Create the Lat - Lon vector to plot the data in the SVD output 
%--------------------------------------------------------------- 
x = west:2.5:east; 
y = south:2.5:north; 
 
for lon = 1:length(x);  
    for lat = 1:length(y); 
y_all(lon,lat) = y(end+1-lat); 
x_all(lon,lat) = x(lon); 
    end 
end 
 
ry_all = reshape(y_all',numel(y_all),1); 
rx_all = reshape(x_all',numel(x_all),1); 
lat_lon = [ry_all rx_all]; 
 
save lat_lon lat_lon 
 

A1.3.2 SVD Analysis And Mapping 

%import standardized ssts and streamflow.  
 
yr = input('Which lag year do you want to analyze? ');  
lag = input('Which 3-month interval do you want to analyze? '); 
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load std_sst 
temp1 = std_sst(:,13-yr:66-yr,lag+1); %grabs 54 columns 
%0 year lag = col13: col66 
%JAS interval is std_sst(:, :, 1).   
load std_stream 
str1 = std_stream; %This is the std streamflow from 1952 - 2005 (N = 54) 
 
[stations years] = size(str1); 
t = temp1'; 
s = str1'; 
 
%calculating covariance 
covar_ts = (1/years) * t' * s;   
    
% svd calculation 
[left, eigs, right] = svd(covar_ts);   
 
% Get the number of modes by calculating 
% the square covariance and check for values >10 
eigenvalues = diag(eigs); 
square_eig = eigenvalues.^2;            %squares of the values 
sum_sq_eig = sum(square_eig) ;          %sum of the squares 
square_cov = square_eig./sum_sq_eig;    %square covariance 
sign_num = find(square_cov >= 0.11);    %find values greater than 10% 
sign_num_val = square_cov(sign_num);                                    
num_modes = numel(sign_num);            %How many values greater than 10% 
 
% Export square covariance data to an excel file 
 
xlswrite('L:\Kenneth Data\Matlab\Phase3\SVD\square_covar.xls',square_cov, '4'); 
 
% Getting temporal expansion  
for i = 1:num_modes; %num_modes; 
    a = left(:,i); 
    left_exp = t*a;                     %Create a matrix of left 
    left_exp_mat(:,i) = left_exp;        %left temporal expansions 
     
    b = right(:,i); 
    right_exp = s*b;                    %create a matrix of right 
    right_exp_mat(:,i) = right_exp;     %right temporal expansions 
end 
 
% Export temporal expansions matrices to excel files 
 
xlswrite('L:\Kenneth Data\matlab\Phase3\SVD\rte.xls',right_exp_mat, '4'); 
xlswrite('L:\Kenneth Data\matlab\Phase3\SVD\lte.xls',left_exp_mat, '4'); 
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% Getting Left heterogenous correlation 
 
%sign_p = input('Significance (in decimal, eg 0.95 for 95%): '); 
sign_p = 1 - 0.95; 
%To reinstate teh use of the input command, simply replace the 0.95 with 
%'sign_p', and remove the comment from the previous command. 
 
[rrt cct] = size(t); 
[rrs ccs] = size(s); 
 
for n = 1:num_modes; 
    rht = right_exp_mat(:,n); 
     
    for m = 1:cct; 
         
    left_heter = [t(:,m) rht];    % left heterogenous correlations figure 
                                            
    [r,p] = corrcoef(left_heter); %Compute sample correlation and p-values. 
    [k,l] = find(p<sign_p);         % Find significant correlations. 
     pp = [k,l];                  % Display their (row,col) indices. 
     if isempty(pp) 
     rl = 0; 
    else 
     rl = r(1,2); 
     end  
    bbb(n,m) = rl; 
    r = r(1,2); 
    all_left(n,m) = r; 
     end 
 
end 
    left_corr_values = bbb'; 
    all_left_correl = all_left'; 
     
     
 %Getting Right heterogeneous correlation 
  
 for u = 1:num_modes;  
    lht = left_exp_mat(:,u); 
     
    for v = 1:ccs; 
         
    right_heter = [s(:,v) lht];    % right heterogenous correlations figure 
                                            
    [rr,pr] = corrcoef(right_heter); %Compute sample correlation and p-values. 
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    [kr,lr] = find(pr<sign_p);         % Find significant correlations. 
     ppr = [kr,lr];                  % Display their (row,col) indices. 
     if isempty(ppr) 
     rrs = 0; 
    else 
     rrs = rr(1,2); 
     end  
    bbbr(u,v) = rrs; 
    rr = rr(1,2); 
    corr_valz(u,v) = rr; 
     end 
 
end 
    right_corr_values = bbbr'; 
    all_corr_valz = corr_valz'; 
     
 %Export significant correlation values to excel files 
       
      xlswrite('L:\Kenneth Data\matlab\Phase3\SVD\stream_correl.xls',right_corr_values, 
'4');  
      xlswrite('L:\Kenneth Data\matlab\Phase3\SVD\SST_correl.xls',left_corr_values, '4');     
      xlswrite('L:\Kenneth Data\matlab\Phase3\SVD\all_stream_correl.xls',all_corr_valz, 
'4'); 
      xlswrite('L:\Kenneth Data\matlab\Phase3\SVD\all_sst_correl.xls',all_left_correl, '4'); 
       
       
% Information to display 
%num_mode_val = 100.* sign_num_val';  
%mode_total = sum(num_mode_val); 
%num_m_val = [num_modes mode_total]; 
 
%fprintf('There are %3.0f modes for this analysis and account for %3.0f percent. 
\n',num_m_val) 
%display(['The square covariance fractions over 10% are ' int2str(num_mode_val) ' 
percent.']) 
%disp(' ')    
 
 
 
%MAPPING SECTION 
%BELOW MAPPING SECTION. 
looper = 1; 
while looper == 1;          % Loop to view figures of different modes. 
  
% Select what to view, Contour of SST or Streamflow Correlations 
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graph2view = input('Which view do you want(sst = 1 or runoff = 2)? ');  
if graph2view == 2     
nm = input('Enter the mode to view: '); 
str_latlong = xlsread('L:\Kenneth Data\matlab\PhaseX\stream_lat_long.xls');%Stream 
Gauge latitude and longitude  
snlat = str_latlong(:,1);                     
snlong = str_latlong(:,2);                    
latlim = [ 30 45];                          % Latitude map limits  
lonlim = [-120 -105];                       % longitude map limits 
figure 
ax = usamap(latlim,lonlim); 
axis off 
states = shaperead('usastatehi',... 
'UseGeoCoords', true, 'BoundingBox', [lonlim', latlim']); 
faceColors = makesymbolspec('Polygon',... 
{'INDEX', [1 numel(states)], ... 
'FaceColor', white(numel(states))}); %polcmap will assign random colors for states 
 
geoshow(ax, states , 'SymbolSpec',faceColors) 
snvalues = right_corr_values; 
array1 = [snlat snlong snvalues(:,nm)]; 
[rows colms]=size(array1); 
for i = 1:rows; 
    if array1(i,3)>0 
        snotlats = array1(i,1); 
        snotlongs = array1(i,2); 
        plotm(snotlats,snotlongs,'r^') 
         
    elseif array1(i,3)<0 
        snotlats = array1(i,1); 
        snotlongs = array1(i,2); 
        plotm(snotlats,snotlongs,'bV')    
    else 
        snotlats = array1(i,1); 
        snotlongs = array1(i,2); 
        plotm(snotlats,snotlongs,'k.')  
    end 
end 
 
for k = 1:numel(states) 
labelPointIsWithinLimits =... 
latlim(1) < states(k).LabelLat &&... 
latlim(2) > states(k).LabelLat &&... 
lonlim(1) < states(k).LabelLon &&... 
lonlim(2) > states(k).LabelLon; 
if labelPointIsWithinLimits 
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textm(states(k).LabelLat,... 
states(k).LabelLon, states(k).Name, 'HorizontalAlignment', 'center') 
end 
 
end 
 
% SSTs contour Mapping 
 
elseif graph2view ==1           %contours 
     
% Load the data and extract the (x,y,z) information: 
% SST latitude and longitude 
lat_long = xlsread('L:\Kenneth Data\Matlab\Phase3\SVD\SST_lat_long.xls');  
x = lat_long(:,2);   
y = lat_long(:,1);  
nn = input('Enter the mode to view: '); 
z = all_left_correl(:,nn); 
% Determine the minimum and the maximum x and y values: 
xmin = min(x); ymin = min(y); 
xmax = max(x); ymax = max(y);  
% Define the resolution of the grid: 
xres=17; 
yres=9; 
% Define the range and spacing of the x- and y-coordinates, 
% and then fit them into X and Y 
xv = linspace(xmin, xmax, xres); 
yv = linspace(ymin, ymax, yres); 
[Xinterp,Yinterp] = meshgrid(xv,yv);  
% Calculate Z in the X-Y interpolation space, which is an  
% evenly spaced grid: 
[xi,yi,Zinterp] = griddata(x,y,z,Xinterp,Yinterp);  
 
load coast 
latlim = [ -30 70];                 % SST area map latitude limit 
lonlim =[120 -80] ;                 % SST area map longitude limit 
figure 
worldmap(latlim,lonlim); 
axis off 
patchm(lat,long, 'k') %plotm patchm 
 
[c,h] = contourfm(yi,xi,Zinterp,-0.81:0.27:0.81);  
contourcmap(0.27,'jet') 
load('MyColormaps2','revmap') 
set(gcf,'Colormap',revmap) 
 
h1 = clabelm(c,h); 
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else 
    disp('Not an acceptable choice.') 
end 
disp(' ') 
looper = input('Do you want to print another figure? (yes = 1, no = 0)'); 
end 
disp(' ') 
disp('I guess you are done for now...') 
 
%---------------------------- 
%Define MyColormaps2 
 
revmap =    0 0 1.0000; 0 0.4980 1.0000; 0 0.7490 1.0000; … 
    1.0000 1.0000 1.0000; 1.0000 1.0000 1.0000; 1.0000 0.6863 0.6863; … 
    1.0000 0.3922 0.3922; 1.0000 0 0]; 
save MyColormaps2 revmap 

 

A1.3.3 Correlation and Mapping 

looper = 1; 
while looper == 1;          % Loop to view figures of different modes. 
clear    
yr = input('Enter the lag year to correlaate: '); 
lag = input('Enter the 3-month interval to correlaate: '); 
%lag 0:JAS / lag 1:JJA / lag 2:MJJ / lag 3:AMJ / lag 4:MAM / 
%lag 5:FMA / lag 6:JFM / lag 7:DJF / lag 8:NDJ / lag 9:OND / 
%lag 10:SON / lag 11:ASO 
          
%yr 0: 1952-2007 (col 5:60) / yr 1: 1951-2006 (col 4:59) 
%yr 2: 1950-2005 (col 3:58) / yr 3: 1949-2004 (col 2:57) 
%----------------------------------------- 
% Getting Left heterogenous correlation 
%----------------------------------------- 
 
%Load the array containing the right temporal expansion series  
%rte is organize such that rows = years, columns = month interval 
%(increasiing lag moving left to right of the columns), and 
%3rd dim = year lag (increasing lag year mving front to back of array) 
load rte 
rte = rte(:,lag+1,yr+1); 
 
%Read in the climate data 
load gph_m 
gph = gph_m(:,5-yr:58-yr,12-lag); 
t = gph';  % rows = years; columns = locations 
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%Define the significance level 
sign_p = 0.05; 
 
[t1 t2] = size(t); 
 
rht = rte; 
     
    for m = 1:t2; 
         
    left_heter = [t(:,m) rht];    % left heterogenous correlations figure 
                                            
    [r,p] = corrcoef(left_heter); %Compute sample correlation and p-values. 
    [k,l] = find(p<sign_p);         % Find significant correlations. 
     pp = [k,l];                  % Display their (row,col) indices. 
%     if isempty(pp) 
%     rl = 0; 
%    else 
%     rl = r(1,2); 
%     end  
%    bbb(:,m) = rl; 
    r = r(1,2); 
    all_left(:,m) = r; 
     end 
 
%left_corr_values = bbb'; 
all_left_correl = all_left'; 
      
%----------------------------------------- 
%MAPPING SECTION 
%----------------------------------------- 
     
% Load the data and extract the (x,y,z) information: 
%------------------------------------------------------------------------ 
load lat_lon 
lat_long = lat_lon; % SST latitude and longitude 
%Longitude: 120E - 280E, every 2.5; Latitude = 70N to 70S every 2.5 degrees 
x = lat_long(:,2);   
y = lat_long(:,1);  
nn = 1; 
 
%Create the Map and show continents in background 
%----------------------------------------- 
load coast 
latlim = [lat_long(end,1) lat_long(1,1)]; % SST area map latitude limit 
lonlim =[lat_long(1,2) lat_long(end,2)] ;  % SST area map longitude limit 
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figure 
worldmap(latlim, lonlim); 
axis off 
plotm(lat,long, 'k') 
 
%Read in the correlation values. 
%------------------------------------------------------------------------ 
z = all_left_correl(:,nn); 
%z = left_corr_values(:,nn); 
 
% Determine the minimum and the maximum x and y values: 
%------------------------------------------------------------------------ 
xmin = min(x); ymin = min(y); 
xmax = max(x); ymax = max(y);  
 
% Define the resolution of the grid: 
%------------------------------------------------------------------------ 
xres=68; %17 was the original value 
yres=36; %9 was the original value 
 
% Define the range and spacing of the x- and y-coordinates, 
% and then fit them into X and Y 
%------------------------------------------------------------------------ 
xv = linspace(xmin, xmax, xres); 
yv = linspace(ymin, ymax, yres); 
[Xinterp,Yinterp] = meshgrid(xv,yv);  
 
% Calculate Z in the X-Y interpolation space, which is an evenly spaced grid: 
%------------------------------------------------------------------------ 
[xi,yi,Zinterp] = griddata(x,y,z,Xinterp,Yinterp);  
 
%[c,h] = contourfm(yi,xi,Zinterp,-0.6:0.2:0.6); 
%contourcmap(0.2,'jet','colorbar','on','location','horizontal') 
%load('MyColormaps','sstmap') 
%set(gcf,'Colormap',sstmap) 
 
[c,h] = contourfm(yi,xi,Zinterp,[-1.0 -0.354 -0.273 0 0.273 0.354 1.0]); 
%contourcmap(0.27,'jet','colorbar','on','location','vertical') 
contourcmap(0.27,'jet') 
load('MyColormaps2','revmap') 
set(gcf,'Colormap',revmap) 
 
h1 = clabelm(c,h); 
 
looper = input('Do you want to print another figure? (yes = 1, no = 0)'); 
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end 
disp(' ') 
disp('I guess you are done for now...') 

 

A1.4 Chapter 5 Data 

A1.4.1 Yearly Mean SST Values for Hondo Region 

 DJF JFM FMA  DJF JFM FMA 

1900 2022.815 1949.27 1964.627 1920 2068.429 1985.765 1986.894 

1901 2056.899 2012.005 2039.143 1921 2067.283 2000.262 1999.608 

1902 2005.675 1933.828 1927.489 1922 2043.847 1960.048 1946.548 

1903 2035.812 1934.307 1926.656 1923 2077.151 2005.312 1996.18 

1904 1992.048 1911.259 1910.868 1924 2076.614 2008.937 1998.418 

1905 2001.198 1941.69 1963.23 1925 2016.159 1935.323 1930.307 

1906 2045.942 1954.529 1963.122 1926 2071.325 2000.714 1990.741 

1907 1989.849 1933.32 1942.307 1927 2052.955 1970.712 1947.119 

1908 2052.873 1975.553 1973.492 1928 2061.862 1989.886 1980.714 

1909 2074.878 2005.222 2007.492 1929 2013.762 1928.799 1927.923 

1910 2064.749 1982.5 1968.093 1930 2062.717 1998.778 1984.852 

1911 2029.455 1943.116 1941.675 1931 2063.405 1975.577 1960.823 

1912 2020.46 1935.585 1938.394 1932 2095.151 2026.963 2013.5 

1913 2012.677 1928.902 1898.979 1933 2048.508 1963.791 1935.968 

1914 2043.807 1957.04 1936.817 1934 2043.447 1972.249 1953.357 

1915 2052.688 1949.659 1927.36 1935 2011.063 1929.987 1924.944 

1916 2066.704 1993.138 1983.206 1936 2023.22 1955.071 1977.19 



www.manaraa.com

156 

1917 2049.77 1976.937 1976.082 1937 2071.915 2002.556 1997.878 

1918 2030.571 1977.698 1985.098 1938 2123.376 2046.249 2033.709 

1919 1984.532 1921.976 1924.22 1939 2008.381 1906.86 1877.423 

 DJF JFM FMA  DJF JFM FMA 

1940 1991.146 1919.598 1918.323 1960 2058.693 1986.333 1976.765 

1941 2058.13 1991.045 1990.27 1961 2072.267 2005.96 1987.304 

1942 2164.354 2076.156 2058.005 1962 2083.582 1999.958 1991.487 

1943 2115.172 2034.873 2023.27 1963 2055.212 1967.788 1949.452 

1944 2101.278 2022.698 2009.111 1964 2086.942 2020.14 2017.77 

1945 2101.278 2022.698 2009.111 1965 2027.23 1943.902 1934.209 

1946 2115.193 2027.587 2016.627 1966 2060.011 1996.46 1978.95 

1947 2002.648 1899.728 1889.579 1967 2078 2013.347 2004.008 

1948 2056.783 1979.442 1969.825 1968 2063.37 1951.352 1928.73 

1949 2121.063 2047.476 2057.817 1969 2040.754 1984.979 2013.19 

1950 2101.765 2023.754 2028.101 1970 2026.238 1955.307 1969.921 

1951 2102.235 2030.913 2016.519 1971 2075.556 1995.212 1996.915 

1952 2102.019 2020.336 2021.098 1972 2056.611 1960.28 1937.794 

1953 2106.339 2024.807 2027.212 1973 2026.222 1971.233 1989.532 

1954 2085.312 1998.011 1977.312 1974 2075.423 1985.521 1971.574 

1955 2080.09 2007.807 2002.847 1975 2096.265 2019.664 2010.733 

1956 2063.899 1996.505 1996.897 1976 2076.728 1995.921 1994.751 

1957 2022.849 1941.767 1942.28 1977 2029.807 1951.46 1955.828 

1958 2024.865 1939.791 1951.934 1978 2008.799 1934.915 1939.325 
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1959 2025.376 1967.328 1965.392 1979 2054.526 1990.474 1977.96 

 DJF JFM FMA  DJF JFM FMA 

1980 1966.487 1896.259 1905.571 2000 2175.36 2099.556 2084.741 

1981 2001.907 1917.37 1928.426 2001 2153.397 2085.468 2081.04 

1982 2043.955 1941.124 1925.238 2002 2146.399 2063.701 2046.508 

1983 1993.68 1901.78 1887.46 2003 2080.048 1988.72 1988.063 

1984 2048.41 1965.214 1974.238 2004 2102.019 2013.937 2003.659 

1985 2037.328 1960.857 1972.635 2005 2059.696 1954.762 1953.495 

1986 2021.421 1929.603 1920.201 2006 2099.217 2023.487 2026.733 

1987 2040.442 1957.68 1943.487 2007 2086.664 2011.124 2005.177 

1988 2078.698 2013.291 2014.14 2008 2158.413 2079.161 2084.825 

1989 2127.796 2034.812 2008.376 2009 2092.283 2020.627 2033.646 

1990 2067.648 1998.177 1982.418     

1991 2038.331 1954.413 1970.59     

1992 2032.19 1959.463 1942.251     

1993 2019.093 1948.365 1945.55     

1994 2032.886 1964.14 1965.04     

1995 2100.968 1980.712 1950.746     

1996 2031.034 1941.413 1945.209     

1997 2004.735 1932.878 1938.563     

1998 2035.299 1948.81 1969.495     

1999 2167.262 2103.463 2113.852     
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A1.5 Chapter 5 Analysis Code 

A1.5.1 Resampling Weight Calculations 

% Script that reads the raw Hondo data for DJF, JFM and FMA and finds the 
% differences between the test year and all 30 calibration years (1976-05) 
load IDX_val 
djf = IDX_val(:,1); 
djf_test = djf(1:75); 
djf30 = djf(76:105); 
 
%Find the difference between each an element in djf_test, and each element in djf30. 
djf_diff = zeros(length(djf30),length(djf_test)); 
for col = 1:length(djf_test) 
    for row = 1:length(djf30) 
        djf_diff(row,col) = abs(djf_test(col) - djf30(row)); 
    end 
end 
xlswrite('L:\Kenneth Data\Matlab\Phase2\Hondo.xls',djf_diff,'k-NN','B34:BX63'); 
 
%Create the probability weight from the k-NN weighting kernel 
%Weights created in Excel and then read in here 
 
xw1_djf = xlsread('L:\Kenneth Data\Matlab\Phase2\Hondo.xls','k-NN','B2:BX31'); 
% convert xw1_djf to matrix where each column adds up to 1.0 
    w1_djf = zeros(length(djf30),length(djf_test)); 
        for col = 1:length(djf_test) 
            for row = 1:length(djf30) 
                w1_djf(row,col) = xw1_djf(row,col)/(sum(xw1_djf(:,col))); 
            end 
        end 
 
%Create the linear distribution of probability weight 
% w2 = 1 - [diff(row,col)/max(dist(:,col))] 
    
w2_djf = zeros(length(djf30),length(djf_test)); 
xw2_djf = zeros(length(djf30),length(djf_test)); 
for col = 1:length(djf_test) 
    for row = 1:length(djf30) 
       xw2_djf(row,col) = 1 - (djf_diff(row,col)/max(djf_diff(:,col))); 
    end 
end 
    % convert w2_djf to matrix where each column adds up to 1.0 
    for col = 1:length(djf_test) 
        for row = 1:length(djf30) 
            w2_djf(row,col) = xw2_djf(row,col)/(sum(xw2_djf(:,col))); 
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        end 
    end 
 
% Create the inverse difference squared probability weight 
% w3 = 1 / diff^2 
xw3_djf = zeros(length(djf30),length(djf_test)); 
w3_djf = zeros(length(djf30),length(djf_test)); 
for col = 1:length(djf_test) 
    for row = 1:length(djf30) 
        xw3_djf(row,col) = 1/(djf_diff(row,col)^2); 
    end 
end 
    % convert xw3_djf to matrix where each column adds up to 1.0 
    for col = 1:length(djf_test) 
        for row = 1:length(djf30) 
            w3_djf(row,col) = xw3_djf(row,col)/(sum(xw3_djf(:,col))); 
        end 
    end 
 
%Create the inverse distance probability weight 
% w4 = 1/diff 
xw4_djf = zeros(length(djf30),length(djf_test)); 
w4_djf = zeros(length(djf30),length(djf_test)); 
for col = 1:length(djf_test) 
    for row = 1:length(djf30) 
        xw4_djf(row,col) = 1/djf_diff(row,col); 
    end 
end 
 
% convert xw4_djf to matrix where each column adds up to 1.0 
    for col = 1:length(djf_test) 
        for row = 1:length(djf30) 
            w4_djf(row,col) = xw4_djf(row,col)/(sum(xw4_djf(:,col))); 
        end 
    end 
 
w_djf = [w1_djf; w2_djf; w3_djf; w4_djf]; 
     
%---------------------------------------- 
%Repeat the Process for the JFM interval 
%---------------------------------------- 
 
%jfm = xlsread('L:\Kenneth Data\Matlab\Phase2\Hondo.xls','Yearly','D4:D112'); 
jfm = IDX_val(:,2); 
jfm_test = jfm(1:75); 
jfm30 = jfm(76:105); 
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%Find the difference between each an element in jfm_test, and each element 
%in jfm30. 
 
jfm_diff = zeros(30,length(jfm_test)); 
for col = 1:length(jfm_test) 
    for row = 1:length(jfm30) 
        jfm_diff(row,col) = abs(jfm_test(col) - jfm30(row)); 
    end 
end 
 
xlswrite('L:\Kenneth Data\Matlab\Phase2\Hondo.xls',jfm_diff,'k-NN','B34:BX63'); 
 
%Create the probability weight from the k-NN weighting kernel 
%Weights created in Excel and then read in here 
 
xw1_jfm = xlsread('L:\Kenneth Data\Matlab\Phase2\Hondo.xls','k-NN','B2:BX31'); 
% convert xw1_jfm to matrix where each column adds up to 1.0 
    w1_jfm = zeros(length(jfm30),length(jfm_test)); 
        for col = 1:length(jfm_test) 
            for row = 1:length(jfm30) 
                w1_jfm(row,col) = xw1_jfm(row,col)/(sum(xw1_jfm(:,col))); 
            end 
        end 
 
%Create the linear distribution of probability weight 
% w2 = 1 - [diff(row,col)/max(dist(:,col))] 
w2_jfm = zeros(length(jfm30),length(jfm_test)); 
xw2_jfm = zeros(length(jfm30),length(jfm_test)); 
for col = 1:length(djf_test) 
    for row = 1:length(jfm30) 
       xw2_jfm(row,col) = 1 - (jfm_diff(row,col)/max(jfm_diff(:,col))); 
    end 
end 
    % convert w2_jfm to matrix where each column adds up to 1.0 
    for col = 1:length(jfm_test) 
        for row = 1:length(jfm30) 
            w2_jfm(row,col) = xw2_jfm(row,col)/(sum(xw2_jfm(:,col))); 
        end 
    end 
 
% Create the inverse difference squared probability weight 
% w3 = 1 / diff^2 
xw3_jfm = zeros(length(jfm30),length(jfm_test)); 
w3_jfm = zeros(length(jfm30),length(jfm_test)); 
for col = 1:length(jfm_test) 
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    for row = 1:length(jfm30) 
        xw3_jfm(row,col) = 1/(jfm_diff(row,col)^2); 
    end 
end 
    % convert xw3_jfm to matrix where each column adds up to 1.0 
    for col = 1:length(jfm_test) 
        for row = 1:length(jfm30) 
            w3_jfm(row,col) = xw3_jfm(row,col)/(sum(xw3_jfm(:,col))); 
        end 
    end 
 
%Create the inverse distance probability weight 
% w4 = 1/diff 
xw4_jfm = zeros(length(jfm30),length(jfm_test)); 
w4_jfm = zeros(length(jfm30),length(jfm_test)); 
for col = 1:length(jfm_test) 
    for row = 1:length(jfm30) 
        xw4_jfm(row,col) = 1/jfm_diff(row,col); 
    end 
end 
     % convert xw4_jfm to matrix where each column adds up to 1.0 
    for col = 1:length(jfm_test) 
        for row = 1:length(jfm30) 
            w4_jfm(row,col) = xw4_jfm(row,col)/(sum(xw4_jfm(:,col))); 
        end 
    end 
 
w_jfm = [w1_jfm; w2_jfm; w3_jfm; w4_jfm]; 
     
%---------------------------------------- 
%Repeat the Process for the FMA interval 
%---------------------------------------- 
 
fma = IDX_val(:,3); 
fma_test = fma(1:75); 
fma30 = fma(76:105); 
 
%Find the difference between each an element in fma_test, and each element 
%in fma30. 
 
fma_diff = zeros(30,length(fma_test)); 
for col = 1:length(fma_test) 
    for row = 1:length(fma30) 
        fma_diff(row,col) = abs(fma_test(col) - fma30(row)); 
    end 
end 
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xlswrite('L:\Kenneth Data\Matlab\Phase2\Hondo.xls',fma_diff,'k-NN','B34:BX63'); 
 
%Create the probability weight from the k-NN weighting kernel 
%Weights created in Excel and then read in here 
xw1_fma = xlsread('L:\Kenneth Data\Matlab\Phase2\Hondo.xls','k-NN','B2:BX31'); 
 
% convert xw1_fma to matrix where each column adds up to 1.0 
    w1_fma = zeros(length(fma30),length(fma_test)); 
        for col = 1:length(fma_test) 
            for row = 1:length(fma30) 
                w1_fma(row,col) = xw1_fma(row,col)/(sum(xw1_fma(:,col))); 
            end 
        end 
 
%Create the linear distribution of probability weight 
% w2 = 1 - [diff(row,col)/max(dist(:,col))] 
w2_fma = zeros(length(fma30),length(fma_test)); 
xw2_fma = zeros(length(fma30),length(fma_test)); 
for col = 1:length(fma_test) 
    for row = 1:length(fma30) 
       xw2_fma(row,col) = 1 - (fma_diff(row,col)/max(fma_diff(:,col))); 
    end 
end 
    % convert w2_fma to matrix where each column adds up to 1.0 
    for col = 1:length(fma_test) 
        for row = 1:length(fma30) 
            w2_fma(row,col) = xw2_fma(row,col)/(sum(xw2_fma(:,col))); 
        end 
    end 
 
% Create the inverse difference squared probability weight 
% w3 = 1 / diff^2 
xw3_fma = zeros(length(fma30),length(fma_test)); 
w3_fma = zeros(length(fma30),length(fma_test)); 
for col = 1:length(fma_test) 
    for row = 1:length(fma30) 
        xw3_fma(row,col) = 1/(fma_diff(row,col)^2); 
    end 
end 
    % convert xw3_fma to matrix where each column adds up to 1.0 
    for col = 1:length(fma_test) 
        for row = 1:length(fma30) 
            w3_fma(row,col) = xw3_fma(row,col)/(sum(xw3_fma(:,col))); 
        end 
    end 



www.manaraa.com

163 

 
%Create the inverse distance probability weight 
% w4 = 1/diff 
xw4_fma = zeros(length(fma30),length(fma_test)); 
w4_fma = zeros(length(fma30),length(fma_test)); 
for col = 1:length(fma_test) 
    for row = 1:length(fma30) 
        xw4_fma(row,col) = 1/fma_diff(row,col); 
    end 
end 
 
% convert xw4_fma to matrix where each column adds up to 1.0 
    for col = 1:length(fma_test) 
        for row = 1:length(fma30) 
            w4_fma(row,col) = xw4_fma(row,col)/(sum(xw4_fma(:,col))); 
        end 
    end 
 
w_fma = [w1_fma; w2_fma; w3_fma; w4_fma]; 
     
%---------------------------------------- 
%Repeat the Process for the Water Year Average interval 
%---------------------------------------- 
 
yr = IDX_val(:,4); 
yr_test = yr(1:75); 
yr30 = yr(76:105); 
 
%Find the difference between each an element in yr_test, and each element 
%in yr30. 
yr_diff = zeros(length(yr30),length(yr_test)); 
for col = 1:length(yr_test) 
    for row = 1:length(yr30) 
        yr_diff(row,col) = abs(yr_test(col) - yr30(row)); 
    end 
end 
 
xlswrite('L:\Kenneth Data\Matlab\Phase2\Hondo.xls',yr_diff,'k-NN','B34:BX63'); 
 
%Create the probability weight from the k-NN weighting kernel 
%Weights created in Excel and then read in here 
 
xw1_yr = xlsread('L:\Kenneth Data\Matlab\Phase2\Hondo.xls','k-NN','B2:BX31'); 
 
    % convert w1_yr to matrix where each column adds up to 1.0 
    w1_yr = zeros(length(yr30),length(yr_test)); 
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        for col = 1:length(yr_test) 
            for row = 1:length(yr30) 
                w1_yr(row,col) = xw1_yr(row,col)/(sum(xw1_yr(:,col))); 
            end 
        end 
 
%Create the linear distribution of probability weight 
% w2 = 1 - [diff(row,col)/max(dist(:,col))] 
w2_yr = zeros(length(yr30),length(yr_test)); 
xw2_yr = zeros(length(yr30),length(yr_test)); 
for col = 1:length(yr_test) 
    for row = 1:length(yr30) 
       xw2_yr(row,col) = 1 - (yr_diff(row,col)/max(yr_diff(:,col))); 
    end 
end 
    % convert w2_yr to matrix where each column adds up to 1.0 
    for col = 1:length(yr_test) 
        for row = 1:length(yr30) 
            w2_yr(row,col) = xw2_yr(row,col)/(sum(xw2_yr(:,col))); 
        end 
    end 
 
% Create the inverse difference squared probability weight 
% w3 = 1 / diff^2 
xw3_yr = zeros(length(yr30),length(yr_test)); 
w3_yr = zeros(length(yr30),length(yr_test)); 
for col = 1:length(yr_test) 
    for row = 1:length(yr30) 
        xw3_yr(row,col) = 1/(yr_diff(row,col)^2); 
    end 
end 
    % convert xw3_yr to matrix where each column adds up to 1.0 
    for col = 1:length(yr_test) 
        for row = 1:length(yr30) 
            w3_yr(row,col) = xw3_yr(row,col)/(sum(xw3_yr(:,col))); 
        end 
    end 
 
%Create the inverse distance probability weight 
% w4 = 1/diff 
xw4_yr = zeros(length(yr30),length(yr_test)); 
w4_yr = zeros(length(yr30),length(yr_test)); 
for col = 1:length(yr_test) 
    for row = 1:length(yr30) 
        xw4_yr(row,col) = 1/yr_diff(row,col); 
    end 
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end 
     % convert xw4_yr to matrix where each column adds up to 1.0 
    for col = 1:length(yr_test) 
        for row = 1:length(yr30) 
            w4_yr(row,col) = xw4_yr(row,col)/(sum(xw4_yr(:,col))); 
        end 
    end 
 
w_yr = [w1_yr; w2_yr; w3_yr; w4_yr]; 
     
aaa = [w_djf w_jfm w_fma w_yr]; 
[dim1 dim2] = size(aaa); 
w_0675 = reshape(aaa,dim1,dim2/4,4); 
 
save w_0675 w_0675 

 

A1.5.2 Forecast Creation 

%THIS CODE CALCUALTES FORECAST VALUES FOR 1906 - 1975 USING THE 
WEIGHTED 
%RESAMPLING (1,000 TIMES) AND THEN FINDS THE MEAN OF EACH 
RESAMPLE, THEN 
%THE MEAN OF ALL RESAMPLING TO OBTAIN THE FORECAST VALUE. 
% RUN TIME: 105 minutes 
 
%------------------------------------- 
%Read in the weights 
%------------------------------------- 
load w_0675 
djf_wall = w_0675(:,:,1); 
jfm_wall = w_0675(:,:,2); 
fma_wall = w_0675(:,:,3); 
 
% From this dataset, the lagged relationships can be defined by using the 
% following columns from the *_wall matrices created above: 
  %0-year lag: 6:75 (1906 - 1975) 
  %1-year lag: 5:74 (1905 - 1974)   
  %2-year lag: 4:73 (1904 - 1973) 
%Total forecasts created at each location = 70 
 
%------------------------------------- 
%  Read in the observed data 
%------------------------------------- 
%qoyr_all = xlsread('L:/Kenneth Data/Matlab/Phase2/Hondo.xls','qobs-y','B2:AD103'); 
load qoyr_all 
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%Create matrices of observed values.  Use the following to know which 
%observed values to be used: 
%Resampling Data: Rows 71:100 for qoyr_all (1976 - 2005) 
%Observation Data: Rows 1:70 (qoaj_all and qoyr_all) 1906 - 1975 
 
%Observed Data Matrix 
qo = qoyr_all(1:70,:); 
 
%Resampling Data Matrix 
qoy = qoyr_all(71:100,:); 
 
%Create matrix of forecasts using just the 30-yr average 
f30 = mean(qoy); 
 
%-------------------------------------- 
%  Run Analysis on DJF | Lag = 0 Year 
%-------------------------------------- 
 
djf_0_w1 = djf_wall(1:30,6:75); 
djf_0_w2 = djf_wall(31:60,6:75); 
djf_0_w3 = djf_wall(61:90,6:75); 
djf_0_w4 = djf_wall(91:120,6:75); 
 
%Create matrix of forecast values 
djf_0_qfall1 = zeros(29,70,1000); 
djf_0_qfall2 = zeros(29,70,1000); 
djf_0_qfall3 = zeros(29,70,1000); 
djf_0_qfall4 = zeros(29,70,1000); 
for loc = 1:29 
for yr = 1:70 
    for l = 1:1000 
        djf_0_qfall1(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(djf_0_w1),true,djf_0_w1(:,yr))); 
        djf_0_qfall2(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(djf_0_w2),true,djf_0_w2(:,yr))); 
        djf_0_qfall3(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(djf_0_w3),true,djf_0_w3(:,yr))); 
        djf_0_qfall4(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(djf_0_w4),true,djf_0_w4(:,yr))); 
    end 
end 
end 
 
djf_0_qf1 = transpose(mean(djf_0_qfall1,3)); 
djf_0_qf2 = transpose(mean(djf_0_qfall2,3)); 
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djf_0_qf3 = transpose(mean(djf_0_qfall3,3)); 
djf_0_qf4 = transpose(mean(djf_0_qfall4,3)); 
 
%-------------------------------------- 
%  Run Analysis on DJF | Lag = 1 Year 
%-------------------------------------- 
 
djf_1_w1 = djf_wall(1:30,5:74); 
djf_1_w2 = djf_wall(31:60,5:74); 
djf_1_w3 = djf_wall(61:90,5:74); 
djf_1_w4 = djf_wall(91:120,5:74); 
 
%Create matrix of forecast values 
djf_1_qfall1 = zeros(29,70,1000); 
djf_1_qfall2 = zeros(29,70,1000); 
djf_1_qfall3 = zeros(29,70,1000); 
djf_1_qfall4 = zeros(29,70,1000); 
for loc = 1:29 
for yr = 1:70 
    for l = 1:1000 
        djf_1_qfall1(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(djf_1_w1),true,djf_1_w1(:,yr))); 
        djf_1_qfall2(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(djf_1_w2),true,djf_1_w2(:,yr))); 
        djf_1_qfall3(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(djf_1_w3),true,djf_1_w3(:,yr))); 
        djf_1_qfall4(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(djf_1_w4),true,djf_1_w4(:,yr))); 
    end 
end 
end 
 
djf_1_qf1 = transpose(mean(djf_1_qfall1,3)); 
djf_1_qf2 = transpose(mean(djf_1_qfall2,3)); 
djf_1_qf3 = transpose(mean(djf_1_qfall3,3)); 
djf_1_qf4 = transpose(mean(djf_1_qfall4,3)); 
 
 
%-------------------------------------- 
%  Run Analysis on DJF | Lag = 2 Year 
%-------------------------------------- 
 
djf_2_w1 = djf_wall(1:30,4:73); 
djf_2_w2 = djf_wall(31:60,4:73); 
djf_2_w3 = djf_wall(61:90,4:73); 
djf_2_w4 = djf_wall(91:120,4:73); 
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%Create matrix of forecast values 
djf_2_qfall1 = zeros(29,70,1000); 
djf_2_qfall2 = zeros(29,70,1000); 
djf_2_qfall3 = zeros(29,70,1000); 
djf_2_qfall4 = zeros(29,70,1000); 
for loc = 1:29 
for yr = 1:70 
    for l = 1:1000 
        djf_2_qfall1(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(djf_2_w1),true,djf_2_w1(:,yr))); 
        djf_2_qfall2(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(djf_2_w2),true,djf_2_w2(:,yr))); 
        djf_2_qfall3(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(djf_2_w3),true,djf_2_w3(:,yr))); 
        djf_2_qfall4(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(djf_2_w4),true,djf_2_w4(:,yr))); 
    end 
end 
end 
 
djf_2_qf1 = transpose(mean(djf_2_qfall1,3)); 
djf_2_qf2 = transpose(mean(djf_2_qfall2,3)); 
djf_2_qf3 = transpose(mean(djf_2_qfall3,3)); 
djf_2_qf4 = transpose(mean(djf_2_qfall4,3)); 
 
%-------------------------------------- 
%  Run Analysis on JFM | Lag = 0 Year 
%-------------------------------------- 
 
jfm_0_w1 = jfm_wall(1:30,6:75); 
jfm_0_w2 = jfm_wall(31:60,6:75); 
jfm_0_w3 = jfm_wall(61:90,6:75); 
jfm_0_w4 = jfm_wall(91:120,6:75); 
 
%Create matrix of forecast values 
jfm_0_qfall1 = zeros(29,70,1000); 
jfm_0_qfall2 = zeros(29,70,1000); 
jfm_0_qfall3 = zeros(29,70,1000); 
jfm_0_qfall4 = zeros(29,70,1000); 
for loc = 1:29 
for yr = 1:70 
    for l = 1:1000 
        jfm_0_qfall1(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(jfm_0_w1),true,jfm_0_w1(:,yr))); 
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        jfm_0_qfall2(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(jfm_0_w2),true,jfm_0_w2(:,yr))); 
        jfm_0_qfall3(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(jfm_0_w3),true,jfm_0_w3(:,yr))); 
        jfm_0_qfall4(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(jfm_0_w4),true,jfm_0_w4(:,yr))); 
    end 
end 
end 
 
jfm_0_qf1 = transpose(mean(jfm_0_qfall1,3)); 
jfm_0_qf2 = transpose(mean(jfm_0_qfall2,3)); 
jfm_0_qf3 = transpose(mean(jfm_0_qfall3,3)); 
jfm_0_qf4 = transpose(mean(jfm_0_qfall4,3)); 
 
%-------------------------------------- 
%  Run Analysis on JFM | Lag = 1 Year 
%-------------------------------------- 
 
jfm_1_w1 = jfm_wall(1:30,5:74); 
jfm_1_w2 = jfm_wall(31:60,5:74); 
jfm_1_w3 = jfm_wall(61:90,5:74); 
jfm_1_w4 = jfm_wall(91:120,5:74); 
 
%Create matrix of forecast values 
jfm_1_qfall1 = zeros(29,70,1000); 
jfm_1_qfall2 = zeros(29,70,1000); 
jfm_1_qfall3 = zeros(29,70,1000); 
jfm_1_qfall4 = zeros(29,70,1000); 
for loc = 1:29 
for yr = 1:70 
    for l = 1:1000 
        jfm_1_qfall1(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(jfm_1_w1),true,jfm_1_w1(:,yr))); 
        jfm_1_qfall2(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(jfm_1_w2),true,jfm_1_w2(:,yr))); 
        jfm_1_qfall3(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(jfm_1_w3),true,jfm_1_w3(:,yr))); 
        jfm_1_qfall4(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(jfm_1_w4),true,jfm_1_w4(:,yr))); 
    end 
end 
end 
 
jfm_1_qf1 = transpose(mean(jfm_1_qfall1,3)); 
jfm_1_qf2 = transpose(mean(jfm_1_qfall2,3)); 
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jfm_1_qf3 = transpose(mean(jfm_1_qfall3,3)); 
jfm_1_qf4 = transpose(mean(jfm_1_qfall4,3)); 
 
%-------------------------------------- 
%  Run Analysis on JFM | Lag = 2 Year 
%-------------------------------------- 
 
jfm_2_w1 = jfm_wall(1:30,4:73); 
jfm_2_w2 = jfm_wall(31:60,4:73); 
jfm_2_w3 = jfm_wall(61:90,4:73); 
jfm_2_w4 = jfm_wall(91:120,4:73); 
 
%Create matrix of forecast values 
jfm_2_qfall1 = zeros(29,70,1000); 
jfm_2_qfall2 = zeros(29,70,1000); 
jfm_2_qfall3 = zeros(29,70,1000); 
jfm_2_qfall4 = zeros(29,70,1000); 
for loc = 1:29 
for yr = 1:70 
    for l = 1:1000 
        jfm_2_qfall1(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(jfm_2_w1),true,jfm_2_w1(:,yr))); 
        jfm_2_qfall2(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(jfm_2_w2),true,jfm_2_w2(:,yr))); 
        jfm_2_qfall3(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(jfm_2_w3),true,jfm_2_w3(:,yr))); 
        jfm_2_qfall4(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(jfm_2_w4),true,jfm_2_w4(:,yr))); 
    end 
end 
end 
 
jfm_2_qf1 = transpose(mean(jfm_2_qfall1,3)); 
jfm_2_qf2 = transpose(mean(jfm_2_qfall2,3)); 
jfm_2_qf3 = transpose(mean(jfm_2_qfall3,3)); 
jfm_2_qf4 = transpose(mean(jfm_2_qfall4,3)); 
 
 
%-------------------------------------- 
%  Run Analysis on FMA | Lag = 0 Year 
%-------------------------------------- 
 
fma_0_w1 = fma_wall(1:30,6:75); 
fma_0_w2 = fma_wall(31:60,6:75); 
fma_0_w3 = fma_wall(61:90,6:75); 
fma_0_w4 = fma_wall(91:120,6:75); 
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%Create matrix of forecast values 
fma_0_qfall1 = zeros(29,70,1000); 
fma_0_qfall2 = zeros(29,70,1000); 
fma_0_qfall3 = zeros(29,70,1000); 
fma_0_qfall4 = zeros(29,70,1000); 
for loc = 1:29 
for yr = 1:70 
    for l = 1:1000 
        fma_0_qfall1(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(fma_0_w1),true,fma_0_w1(:,yr))); 
        fma_0_qfall2(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(fma_0_w2),true,fma_0_w2(:,yr))); 
        fma_0_qfall3(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(fma_0_w3),true,fma_0_w3(:,yr))); 
        fma_0_qfall4(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(fma_0_w4),true,fma_0_w4(:,yr))); 
    end 
end 
end 
 
fma_0_qf1 = transpose(mean(fma_0_qfall1,3)); 
fma_0_qf2 = transpose(mean(fma_0_qfall2,3)); 
fma_0_qf3 = transpose(mean(fma_0_qfall3,3)); 
fma_0_qf4 = transpose(mean(fma_0_qfall4,3)); 
 
%-------------------------------------- 
%  Forecasts FMA | Lag = 1 Year 
%-------------------------------------- 
 
fma_1_w1 = fma_wall(1:30,5:74); 
fma_1_w2 = fma_wall(31:60,5:74); 
fma_1_w3 = fma_wall(61:90,5:74); 
fma_1_w4 = fma_wall(91:120,5:74); 
 
%Create matrix of forecast values 
fma_1_qfall1 = zeros(29,70,1000); 
fma_1_qfall2 = zeros(29,70,1000); 
fma_1_qfall3 = zeros(29,70,1000); 
fma_1_qfall4 = zeros(29,70,1000); 
for loc = 1:29 
for yr = 1:70 
    for l = 1:1000 
        fma_1_qfall1(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(fma_1_w1),true,fma_1_w1(:,yr))); 
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        fma_1_qfall2(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(fma_1_w2),true,fma_1_w2(:,yr))); 
        fma_1_qfall3(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(fma_1_w3),true,fma_1_w3(:,yr))); 
        fma_1_qfall4(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(fma_1_w4),true,fma_1_w4(:,yr))); 
    end 
end 
end 
 
fma_1_qf1 = transpose(mean(fma_1_qfall1,3)); 
fma_1_qf2 = transpose(mean(fma_1_qfall2,3)); 
fma_1_qf3 = transpose(mean(fma_1_qfall3,3)); 
fma_1_qf4 = transpose(mean(fma_1_qfall4,3)); 
 
%-------------------------------------- 
%  Forecasts FMA | Lag = 2 Year 
%-------------------------------------- 
 
fma_2_w1 = fma_wall(1:30,4:73); 
fma_2_w2 = fma_wall(31:60,4:73); 
fma_2_w3 = fma_wall(61:90,4:73); 
fma_2_w4 = fma_wall(91:120,4:73); 
 
%Create matrix of forecast values 
fma_2_qfall1 = zeros(29,70,1000); 
fma_2_qfall2 = zeros(29,70,1000); 
fma_2_qfall3 = zeros(29,70,1000); 
fma_2_qfall4 = zeros(29,70,1000); 
for loc = 1:29 
for yr = 1:70 
    for l = 1:1000 
        fma_2_qfall1(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(fma_2_w1),true,fma_2_w1(:,yr))); 
        fma_2_qfall2(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(fma_2_w2),true,fma_2_w2(:,yr))); 
        fma_2_qfall3(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(fma_2_w3),true,fma_2_w3(:,yr))); 
        fma_2_qfall4(loc,yr,l) = 
mean(randsample(qoy(:,loc),length(fma_2_w4),true,fma_2_w4(:,yr))); 
    end 
end 
end 
 
fma_2_qf1 = transpose(mean(fma_2_qfall1,3)); 
fma_2_qf2 = transpose(mean(fma_2_qfall2,3)); 
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fma_2_qf3 = transpose(mean(fma_2_qfall3,3)); 
fma_2_qf4 = transpose(mean(fma_2_qfall4,3)); 
 
%------------------------------------------ 
%  Collect forecast values and write to Excel 
%------------------------------------------ 
 
f_djf_all = [djf_0_qf1 djf_0_qf2 djf_0_qf3 djf_0_qf4 ... 
    djf_1_qf1 djf_1_qf2 djf_1_qf3 djf_1_qf4 ... 
    djf_2_qf1 djf_2_qf2 djf_2_qf3 djf_2_qf4]; 
f_jfm_all = [jfm_0_qf1 jfm_0_qf2 jfm_0_qf3 jfm_0_qf4 ... 
    jfm_1_qf1 jfm_1_qf2 jfm_1_qf3 jfm_1_qf4 ... 
    jfm_2_qf1 jfm_2_qf2 jfm_2_qf3 jfm_2_qf4]; 
f_fma_all = [fma_0_qf1 fma_0_qf2 fma_0_qf3 fma_0_qf4 ... 
    fma_1_qf1 fma_1_qf2 fma_1_qf3 fma_1_qf4 ... 
    fma_2_qf1 fma_2_qf2 fma_2_qf3 fma_2_qf4]; 
 
%xlswrite('L:/Kenneth Data/Matlab/Phase2/Hondo_f.xls',f_djf_all', 'f_djf','C2'); 
%xlswrite('L:/Kenneth Data/Matlab/Phase2/Hondo_f.xls',f_jfm_all', 'f_jfm','C2'); 
%xlswrite('L:/Kenneth Data/Matlab/Phase2/Hondo_f.xls',f_fma_all', 'f_fma','C2'); 
 
%aaa = [f_djf_all f_jfm_all f_fma_all]; 
%[dim1 dim2] = size(aaa); 
%f_0675 = reshape(aaa,dim1,dim2/3,3); 
 
%save f_0675 f_0675 
 

A1.5.3 LEPS Calculation 

%Read in the observed data 
load qoyr_all 
%Create matrices of observed values.  Use the following to know which 
%observed values to be used: 
%Resampling Data: Rows 71:100 for both qoaj_all and qoyr_all (1976 - 2005) 
%Observation Data: Rows 1:70 (qoaj_all and qoyr_all) 1906 - 1975 
 
%Observed Data Matrix 
qoyr = qoyr_all(1:70,:); 
 
%Resampling Data Matrix 
qoy = qoyr_all(71:100,:); 
 
%Read in Forecast values created with the forecasts.m command 
load f_0675 
djf_fall = f_0675(:,:,1); 
jfm_fall = f_0675(:,:,2); 
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fma_fall = f_0675(:,:,3); 
 
%--------------------------------------------- 
% Calculate for Lag = 0 Year 
%--------------------------------------------- 
 
%Create zero matrices 
yoy = zeros(70,29); 
djf_0_yf1 = zeros(70,29); 
djf_0_yf2 = zeros(70,29); 
djf_0_yf3 = zeros(70,29); 
djf_0_yf4 = zeros(70,29); 
djf_0_leps1 = zeros(70,29); 
djf_0_leps2 = zeros(70,29); 
djf_0_leps3 = zeros(70,29); 
djf_0_leps4 = zeros(70,29); 
djf_0_lepsmax1 = zeros(70,29); 
djf_0_lepsmax2 = zeros(70,29); 
djf_0_lepsmax3 = zeros(70,29); 
djf_0_lepsmax4 = zeros(70,29); 
lepsmin = zeros(70,29); 
djf_0_sk1 = zeros(29,1); 
djf_0_sk2 = zeros(29,1); 
djf_0_sk3 = zeros(29,1); 
djf_0_sk4 = zeros(29,1); 
 
%Divide out the forecast values into each alternative for this lag time 
djf_0_qf1 = djf_fall(:,1:29); 
djf_0_qf2 = djf_fall(:,30:58); 
djf_0_qf3 = djf_fall(:,59:87); 
djf_0_qf4 = djf_fall(:,88:116); 
 
%Find the Probabilities to define the y-axis of the eCDF.  Create seperate 
%eCDF function for the Apr-Jul observations and the Yearly observations. 
P = transpose((1:size(qoyr,1))/(size(qoyr,1)+1)); 
 
%Find the probabilities of the observed (yo) and forecasted (yf) values 
%on the PDF by interpolating along the qopdf data. 
for loc = 1:29 
for yr = 1:70 
    yoy(yr,loc) = interp1(sort(qoyr(:,loc)),P,qoyr(yr,loc),'linear','extrap' ); 
     
    djf_0_yf1(yr,loc) = interp1(sort(qoyr(:,loc)),P,djf_0_qf1(yr,loc),'linear','extrap' ); 
    djf_0_yf2(yr,loc) = interp1(sort(qoyr(:,loc)),P,djf_0_qf2(yr,loc),'linear','extrap' ); 
    djf_0_yf3(yr,loc) = interp1(sort(qoyr(:,loc)),P,djf_0_qf3(yr,loc),'linear','extrap' ); 
    djf_0_yf4(yr,loc) = interp1(sort(qoyr(:,loc)),P,djf_0_qf4(yr,loc),'linear','extrap' ); 
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end 
end 
 
% Calculate the min LEPS Scores possible from the April-July and Yearly 
% volumes 
for loc = 1:29 
for yr = 1:70   
    if yoy(yr,loc)>=0.5 
    lepsmin(yr,loc) = (3*(1-abs(0 - yoy(yr,loc)) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    else 
    lepsmin(yr,loc) = (3*(1-abs(1 - yoy(yr,loc)) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    end 
end 
end 
 
%Calculate the max possible LEPS scores 
for loc = 1:29 
for yr = 1:70 
    djf_0_lepsmax1(yr,loc) = (3*(1-abs(djf_0_yf1(yr,loc) - djf_0_yf1(yr,loc))... 
        + djf_0_yf1(yr,loc)^2 - djf_0_yf1(yr,loc) + djf_0_yf1(yr,loc)^2 - djf_0_yf1(yr,loc)) 
- 1); 
    djf_0_lepsmax2(yr,loc) = (3*(1-abs(djf_0_yf2(yr,loc) - djf_0_yf2(yr,loc))... 
        + djf_0_yf2(yr,loc)^2 - djf_0_yf2(yr,loc) + djf_0_yf2(yr,loc)^2 - djf_0_yf2(yr,loc)) 
- 1); 
    djf_0_lepsmax3(yr,loc) = (3*(1-abs(djf_0_yf3(yr,loc) - djf_0_yf3(yr,loc))... 
        + djf_0_yf3(yr,loc)^2 - djf_0_yf3(yr,loc) + djf_0_yf3(yr,loc)^2 - djf_0_yf3(yr,loc)) 
- 1); 
    djf_0_lepsmax4(yr,loc) = (3*(1-abs(djf_0_yf4(yr,loc) - djf_0_yf4(yr,loc))... 
        + djf_0_yf4(yr,loc)^2 - djf_0_yf4(yr,loc) + djf_0_yf4(yr,loc)^2 - djf_0_yf4(yr,loc)) 
- 1); 
end 
end 
 
%Calculate the LEPS scores from the yfx and the yo matrices 
for loc = 1:29 
for yr = 1:70 
    djf_0_leps1(yr,loc) = (3*(1-abs(djf_0_yf1(yr,loc) - yoy(yr,loc))... 
        + djf_0_yf1(yr,loc)^2 - djf_0_yf1(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    djf_0_leps2(yr,loc) = (3*(1-abs(djf_0_yf2(yr,loc) - yoy(yr,loc))... 
        + djf_0_yf2(yr,loc)^2 - djf_0_yf2(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    djf_0_leps3(yr,loc) = (3*(1-abs(djf_0_yf3(yr,loc) - yoy(yr,loc))... 
        + djf_0_yf3(yr,loc)^2 - djf_0_yf3(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    djf_0_leps4(yr,loc) = (3*(1-abs(djf_0_yf4(yr,loc) - yoy(yr,loc))... 
        + djf_0_yf4(yr,loc)^2 - djf_0_yf4(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
end 
end 
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%Calculate the Average Skill score at each location 
for loc = 1:29 
    if sum(djf_0_leps1(:,loc))>=0 
        djf_0_sk1(loc) = sum(djf_0_leps1(:,loc))/sum(djf_0_lepsmax1(:,loc)); 
    else 
        djf_0_sk1(loc) = sum(djf_0_leps1(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(djf_0_leps2(:,loc))>=0 
        djf_0_sk2(loc) = sum(djf_0_leps2(:,loc))/sum(djf_0_lepsmax2(:,loc)); 
    else 
        djf_0_sk2(loc) = sum(djf_0_leps2(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(djf_0_leps3(:,loc))>=0 
        djf_0_sk3(loc) = sum(djf_0_leps3(:,loc))/sum(djf_0_lepsmax3(:,loc)); 
    else 
        djf_0_sk3(loc) = sum(djf_0_leps3(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(djf_0_leps4(:,loc))>=0 
        djf_0_sk4(loc) = sum(djf_0_leps4(:,loc))/sum(djf_0_lepsmax4(:,loc)); 
    else 
        djf_0_sk4(loc) = sum(djf_0_leps4(:,loc))/sum(lepsmin(:,loc)); 
    end 
end 
 
djf_0_sk = 100*[djf_0_sk1 djf_0_sk2 djf_0_sk3 djf_0_sk4]; 
 
%--------------------------------------------- 
% Recalculate for Lag = 1Year 
%--------------------------------------------- 
 
%Divide weight data into each weight for the lag 1 alternative 
djf_1_yf1 = zeros(70,29); 
djf_1_yf2 = zeros(70,29); 
djf_1_yf3 = zeros(70,29); 
djf_1_yf4 = zeros(70,29); 
djf_1_leps1 = zeros(70,29); 
djf_1_leps2 = zeros(70,29); 
djf_1_leps3 = zeros(70,29); 
djf_1_leps4 = zeros(70,29); 
djf_1_lepsmax1 = zeros(70,29); 
djf_1_lepsmax2 = zeros(70,29); 
djf_1_lepsmax3 = zeros(70,29); 
djf_1_lepsmax4 = zeros(70,29); 
djf_1_sk1 = zeros(29,1); 
djf_1_sk2 = zeros(29,1); 
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djf_1_sk3 = zeros(29,1); 
djf_1_sk4 = zeros(29,1); 
 
%Divide out the forecast values into each alternative for this lag time 
djf_1_qf1 = djf_fall(:,117:145); 
djf_1_qf2 = djf_fall(:,146:174); 
djf_1_qf3 = djf_fall(:,175:203); 
djf_1_qf4 = djf_fall(:,204:232); 
 
%Find the Probabilities to define the y-axis of the eCDF.  Create seperate 
%eCDF function for the Apr-Jul observations and the Yearly observations. 
P = transpose((1:size(qoyr,1))/(size(qoyr,1)+1)); 
 
%Find the probabilities of the observed (yo) and forecasted (yf) values 
%on the PDF by interpolating along the qopdf data. 
for loc = 1:29 
for yr = 1:70 
    yoy(yr,loc) = interp1(sort(qoyr(:,loc)),P,qoyr(yr,loc),'linear','extrap' ); 
     
    djf_1_yf1(yr,loc) = interp1(sort(qoyr(:,loc)),P,djf_1_qf1(yr,loc),'linear','extrap' ); 
    djf_1_yf2(yr,loc) = interp1(sort(qoyr(:,loc)),P,djf_1_qf2(yr,loc),'linear','extrap' ); 
    djf_1_yf3(yr,loc) = interp1(sort(qoyr(:,loc)),P,djf_1_qf3(yr,loc),'linear','extrap' ); 
    djf_1_yf4(yr,loc) = interp1(sort(qoyr(:,loc)),P,djf_1_qf4(yr,loc),'linear','extrap' ); 
end 
end 
 
%Calculate the max possible LEPS scores 
for loc = 1:29 
for yr = 1:70 
    djf_1_lepsmax1(yr,loc) = (3*(1-abs(djf_1_yf1(yr,loc) - djf_1_yf1(yr,loc))... 
        + djf_1_yf1(yr,loc)^2 - djf_1_yf1(yr,loc) + djf_1_yf1(yr,loc)^2 - djf_1_yf1(yr,loc)) 
- 1); 
    djf_1_lepsmax2(yr,loc) = (3*(1-abs(djf_1_yf2(yr,loc) - djf_1_yf2(yr,loc))... 
        + djf_1_yf2(yr,loc)^2 - djf_1_yf2(yr,loc) + djf_1_yf2(yr,loc)^2 - djf_1_yf2(yr,loc)) 
- 1); 
    djf_1_lepsmax3(yr,loc) = (3*(1-abs(djf_1_yf3(yr,loc) - djf_1_yf3(yr,loc))... 
        + djf_1_yf3(yr,loc)^2 - djf_1_yf3(yr,loc) + djf_1_yf3(yr,loc)^2 - djf_1_yf3(yr,loc)) 
- 1); 
    djf_1_lepsmax4(yr,loc) = (3*(1-abs(djf_1_yf4(yr,loc) - djf_1_yf4(yr,loc))... 
        + djf_1_yf4(yr,loc)^2 - djf_1_yf4(yr,loc) + djf_1_yf4(yr,loc)^2 - djf_1_yf4(yr,loc)) 
- 1); 
end 
end 
 
%Calculate the LEPS scores from the yfx and the yo matrices 
for loc = 1:29 
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for yr = 1:70 
    djf_1_leps1(yr,loc) = (3*(1-abs(djf_1_yf1(yr,loc) - yoy(yr,loc))... 
        + djf_1_yf1(yr,loc)^2 - djf_1_yf1(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    djf_1_leps2(yr,loc) = (3*(1-abs(djf_1_yf2(yr,loc) - yoy(yr,loc))... 
        + djf_1_yf2(yr,loc)^2 - djf_1_yf2(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    djf_1_leps3(yr,loc) = (3*(1-abs(djf_1_yf3(yr,loc) - yoy(yr,loc))... 
        + djf_1_yf3(yr,loc)^2 - djf_1_yf3(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    djf_1_leps4(yr,loc) = (3*(1-abs(djf_1_yf4(yr,loc) - yoy(yr,loc))... 
        + djf_1_yf4(yr,loc)^2 - djf_1_yf4(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
end 
end 
 
%Calculate the Average Skill score at each location 
for loc = 1:29 
    if sum(djf_1_leps1(:,loc))>=0 
        djf_1_sk1(loc) = sum(djf_1_leps1(:,loc))/sum(djf_1_lepsmax1(:,loc)); 
    else 
        djf_1_sk1(loc) = sum(djf_1_leps1(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(djf_1_leps2(:,loc))>=0 
        djf_1_sk2(loc) = sum(djf_1_leps2(:,loc))/sum(djf_1_lepsmax2(:,loc)); 
    else 
        djf_1_sk2(loc) = sum(djf_1_leps2(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(djf_1_leps3(:,loc))>=0 
        djf_1_sk3(loc) = sum(djf_1_leps3(:,loc))/sum(djf_1_lepsmax3(:,loc)); 
    else 
        djf_1_sk3(loc) = sum(djf_1_leps3(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(djf_1_leps4(:,loc))>=0 
        djf_1_sk4(loc) = sum(djf_1_leps4(:,loc))/sum(djf_1_lepsmax4(:,loc)); 
    else 
        djf_1_sk4(loc) = sum(djf_1_leps4(:,loc))/sum(lepsmin(:,loc)); 
    end 
end 
 
djf_1_sk = 100*[djf_1_sk1 djf_1_sk2 djf_1_sk3 djf_1_sk4]; 
 
%--------------------------------------------- 
% Recalculate for Lag = 2 Years 
%--------------------------------------------- 
 
djf_2_yf1 = zeros(70,29); 
djf_2_yf2 = zeros(70,29); 
djf_2_yf3 = zeros(70,29); 
djf_2_yf4 = zeros(70,29); 
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djf_2_leps1 = zeros(70,29); 
djf_2_leps2 = zeros(70,29); 
djf_2_leps3 = zeros(70,29); 
djf_2_leps4 = zeros(70,29); 
djf_2_lepsmax1 = zeros(70,29); 
djf_2_lepsmax2 = zeros(70,29); 
djf_2_lepsmax3 = zeros(70,29); 
djf_2_lepsmax4 = zeros(70,29); 
djf_2_sk1 = zeros(29,1); 
djf_2_sk2 = zeros(29,1); 
djf_2_sk3 = zeros(29,1); 
djf_2_sk4 = zeros(29,1); 
 
%Divide out the forecast values into each alternative for this lag time 
djf_2_qf1 = djf_fall(:,233:261); 
djf_2_qf2 = djf_fall(:,262:290); 
djf_2_qf3 = djf_fall(:,291:319); 
djf_2_qf4 = djf_fall(:,320:348); 
 
%Find the Probabilities to define the y-axis of the eCDF.  Create seperate 
%eCDF function for the Apr-Jul observations and the Yearly observations. 
P = transpose((1:size(qoyr,1))/(size(qoyr,1)+1)); 
 
%Find the probabilities of the observed (yo) and forecasted (yf) values 
%on the PDF by interpolating along the qopdf data. 
for loc = 1:29 
for yr = 1:70 
    yoy(yr,loc) = interp1(sort(qoyr(:,loc)),P,qoyr(yr,loc),'linear','extrap' ); 
     
    djf_2_yf1(yr,loc) = interp1(sort(qoyr(:,loc)),P,djf_2_qf1(yr,loc),'linear','extrap' ); 
    djf_2_yf2(yr,loc) = interp1(sort(qoyr(:,loc)),P,djf_2_qf2(yr,loc),'linear','extrap' ); 
    djf_2_yf3(yr,loc) = interp1(sort(qoyr(:,loc)),P,djf_2_qf3(yr,loc),'linear','extrap' ); 
    djf_2_yf4(yr,loc) = interp1(sort(qoyr(:,loc)),P,djf_2_qf4(yr,loc),'linear','extrap' ); 
end 
end 
 
%Calculate the max possible LEPS scores 
for loc = 1:29 
for yr = 1:70 
    djf_2_lepsmax1(yr,loc) = (3*(1-abs(djf_2_yf1(yr,loc) - djf_2_yf1(yr,loc))... 
        + djf_2_yf1(yr,loc)^2 - djf_2_yf1(yr,loc) + djf_2_yf1(yr,loc)^2 - djf_2_yf1(yr,loc)) 
- 1); 
    djf_2_lepsmax2(yr,loc) = (3*(1-abs(djf_2_yf2(yr,loc) - djf_2_yf2(yr,loc))... 
        + djf_2_yf2(yr,loc)^2 - djf_2_yf2(yr,loc) + djf_2_yf2(yr,loc)^2 - djf_2_yf2(yr,loc)) 
- 1); 
    djf_2_lepsmax3(yr,loc) = (3*(1-abs(djf_2_yf3(yr,loc) - djf_2_yf3(yr,loc))... 
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        + djf_2_yf3(yr,loc)^2 - djf_2_yf3(yr,loc) + djf_2_yf3(yr,loc)^2 - djf_2_yf3(yr,loc)) 
- 1); 
    djf_2_lepsmax4(yr,loc) = (3*(1-abs(djf_2_yf4(yr,loc) - djf_2_yf4(yr,loc))... 
        + djf_2_yf4(yr,loc)^2 - djf_2_yf4(yr,loc) + djf_2_yf4(yr,loc)^2 - djf_2_yf4(yr,loc)) 
- 1); 
end 
end 
 
%Calculate the LEPS scores from the yfx and the yo matrices 
for loc = 1:29 
for yr = 1:70 
    djf_2_leps1(yr,loc) = (3*(1-abs(djf_2_yf1(yr,loc) - yoy(yr,loc))... 
        + djf_2_yf1(yr,loc)^2 - djf_2_yf1(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    djf_2_leps2(yr,loc) = (3*(1-abs(djf_2_yf2(yr,loc) - yoy(yr,loc))... 
        + djf_2_yf2(yr,loc)^2 - djf_2_yf2(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    djf_2_leps3(yr,loc) = (3*(1-abs(djf_2_yf3(yr,loc) - yoy(yr,loc))... 
        + djf_2_yf3(yr,loc)^2 - djf_2_yf3(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    djf_2_leps4(yr,loc) = (3*(1-abs(djf_2_yf4(yr,loc) - yoy(yr,loc))... 
        + djf_2_yf4(yr,loc)^2 - djf_2_yf4(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
end 
end 
 
%Calculate the Average Skill score at each location 
for loc = 1:29 
    if sum(djf_2_leps1(:,loc))>=0 
        djf_2_sk1(loc) = sum(djf_2_leps1(:,loc))/sum(djf_2_lepsmax1(:,loc)); 
    else 
        djf_2_sk1(loc) = sum(djf_2_leps1(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(djf_2_leps2(:,loc))>=0 
        djf_2_sk2(loc) = sum(djf_2_leps2(:,loc))/sum(djf_2_lepsmax2(:,loc)); 
    else 
        djf_2_sk2(loc) = sum(djf_2_leps2(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(djf_2_leps3(:,loc))>=0 
        djf_2_sk3(loc) = sum(djf_2_leps3(:,loc))/sum(djf_2_lepsmax3(:,loc)); 
    else 
        djf_2_sk3(loc) = sum(djf_2_leps3(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(djf_2_leps4(:,loc))>=0 
        djf_2_sk4(loc) = sum(djf_2_leps4(:,loc))/sum(djf_2_lepsmax4(:,loc)); 
    else 
        djf_2_sk4(loc) = sum(djf_2_leps4(:,loc))/sum(lepsmin(:,loc)); 
    end 
end 
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djf_2_sk = 100*[djf_2_sk1 djf_2_sk2 djf_2_sk3 djf_2_sk4]; 
toc 
%------------------------------- 
%Recalc for JFM | lag = 0 
%------------------------------- 
 
jfm_0_yf1 = zeros(70,29); 
jfm_0_yf2 = zeros(70,29); 
jfm_0_yf3 = zeros(70,29); 
jfm_0_yf4 = zeros(70,29); 
jfm_0_leps1 = zeros(70,29); 
jfm_0_leps2 = zeros(70,29); 
jfm_0_leps3 = zeros(70,29); 
jfm_0_leps4 = zeros(70,29); 
jfm_0_lepsmax1 = zeros(70,29); 
jfm_0_lepsmax2 = zeros(70,29); 
jfm_0_lepsmax3 = zeros(70,29); 
jfm_0_lepsmax4 = zeros(70,29); 
jfm_0_sk1 = zeros(29,1); 
jfm_0_sk2 = zeros(29,1); 
jfm_0_sk3 = zeros(29,1); 
jfm_0_sk4 = zeros(29,1); 
 
%Divide out the forecast values into each alternative for this lag time 
jfm_0_qf1 = jfm_fall(:,1:29); 
jfm_0_qf2 = jfm_fall(:,30:58); 
jfm_0_qf3 = jfm_fall(:,59:87); 
jfm_0_qf4 = jfm_fall(:,88:116); 
 
%Find the Probabilities to define the y-axis of the eCDF.  Create seperate 
%eCDF function for the Apr-Jul observations and the Yearly observations. 
P = transpose((1:size(qoyr,1))/(size(qoyr,1)+1)); 
 
%Find the probabilities of the observed (yo) and forecasted (yf) values 
%on the PDF by interpolating along the qopdf data. 
for loc = 1:29 
for yr = 1:70 
    yoy(yr,loc) = interp1(sort(qoyr(:,loc)),P,qoyr(yr,loc),'linear','extrap' ); 
     
    jfm_0_yf1(yr,loc) = interp1(sort(qoyr(:,loc)),P,jfm_0_qf1(yr,loc),'linear','extrap' ); 
    jfm_0_yf2(yr,loc) = interp1(sort(qoyr(:,loc)),P,jfm_0_qf2(yr,loc),'linear','extrap' ); 
    jfm_0_yf3(yr,loc) = interp1(sort(qoyr(:,loc)),P,jfm_0_qf3(yr,loc),'linear','extrap' ); 
    jfm_0_yf4(yr,loc) = interp1(sort(qoyr(:,loc)),P,jfm_0_qf4(yr,loc),'linear','extrap' ); 
end 
end 
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% Calculate the min LEPS Scores possible from the April-July and Yearly 
% volumes 
for loc = 1:29 
for yr = 1:70   
if yoy(yr,loc)>=0.5 
    lepsmin(yr,loc) = (3*(1-abs(0 - yoy(yr,loc)) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
else 
    lepsmin(yr,loc) = (3*(1-abs(1 - yoy(yr,loc)) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
end 
end 
end 
 
%Calculate the max possible LEPS scores 
for loc = 1:29 
for yr = 1:70 
    jfm_0_lepsmax1(yr,loc) = (3*(1-abs(jfm_0_yf1(yr,loc) - jfm_0_yf1(yr,loc))... 
        + jfm_0_yf1(yr,loc)^2 - jfm_0_yf1(yr,loc) + jfm_0_yf1(yr,loc)^2 - 
jfm_0_yf1(yr,loc)) - 1); 
    jfm_0_lepsmax2(yr,loc) = (3*(1-abs(jfm_0_yf2(yr,loc) - jfm_0_yf2(yr,loc))... 
        + jfm_0_yf2(yr,loc)^2 - jfm_0_yf2(yr,loc) + jfm_0_yf2(yr,loc)^2 - 
jfm_0_yf2(yr,loc)) - 1); 
    jfm_0_lepsmax3(yr,loc) = (3*(1-abs(jfm_0_yf3(yr,loc) - jfm_0_yf3(yr,loc))... 
        + jfm_0_yf3(yr,loc)^2 - jfm_0_yf3(yr,loc) + jfm_0_yf3(yr,loc)^2 - 
jfm_0_yf3(yr,loc)) - 1); 
    jfm_0_lepsmax4(yr,loc) = (3*(1-abs(jfm_0_yf4(yr,loc) - jfm_0_yf4(yr,loc))... 
        + jfm_0_yf4(yr,loc)^2 - jfm_0_yf4(yr,loc) + jfm_0_yf4(yr,loc)^2 - 
jfm_0_yf4(yr,loc)) - 1); 
end 
end 
 
%Calculate the LEPS scores from the yfx and the yo matrices 
for loc = 1:29 
for yr = 1:70 
    jfm_0_leps1(yr,loc) = (3*(1-abs(jfm_0_yf1(yr,loc) - yoy(yr,loc))... 
        + jfm_0_yf1(yr,loc)^2 - jfm_0_yf1(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    jfm_0_leps2(yr,loc) = (3*(1-abs(jfm_0_yf2(yr,loc) - yoy(yr,loc))... 
        + jfm_0_yf2(yr,loc)^2 - jfm_0_yf2(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    jfm_0_leps3(yr,loc) = (3*(1-abs(jfm_0_yf3(yr,loc) - yoy(yr,loc))... 
        + jfm_0_yf3(yr,loc)^2 - jfm_0_yf3(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    jfm_0_leps4(yr,loc) = (3*(1-abs(jfm_0_yf4(yr,loc) - yoy(yr,loc))... 
        + jfm_0_yf4(yr,loc)^2 - jfm_0_yf4(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
end 
end 
 
%Calculate the Average Skill score at each location 
for loc = 1:29 



www.manaraa.com

183 

    if sum(jfm_0_leps1(:,loc))>=0 
        jfm_0_sk1(loc) = sum(jfm_0_leps1(:,loc))/sum(jfm_0_lepsmax1(:,loc)); 
    else 
        jfm_0_sk1(loc) = sum(jfm_0_leps1(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(jfm_0_leps2(:,loc))>=0 
        jfm_0_sk2(loc) = sum(jfm_0_leps2(:,loc))/sum(jfm_0_lepsmax2(:,loc)); 
    else 
        jfm_0_sk2(loc) = sum(jfm_0_leps2(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(jfm_0_leps3(:,loc))>=0 
        jfm_0_sk3(loc) = sum(jfm_0_leps3(:,loc))/sum(jfm_0_lepsmax3(:,loc)); 
    else 
        jfm_0_sk3(loc) = sum(jfm_0_leps3(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(jfm_0_leps4(:,loc))>=0 
        jfm_0_sk4(loc) = sum(jfm_0_leps4(:,loc))/sum(jfm_0_lepsmax4(:,loc)); 
    else 
        jfm_0_sk4(loc) = sum(jfm_0_leps4(:,loc))/sum(lepsmin(:,loc)); 
    end 
end 
 
jfm_0_sk = 100*[jfm_0_sk1 jfm_0_sk2 jfm_0_sk3 jfm_0_sk4]; 
 
%--------------------------------------------- 
% Recalculate for JFM | Lag = 1Year 
%--------------------------------------------- 
jfm_1_yf1 = zeros(70,29); 
jfm_1_yf2 = zeros(70,29); 
jfm_1_yf3 = zeros(70,29); 
jfm_1_yf4 = zeros(70,29); 
jfm_1_leps1 = zeros(70,29); 
jfm_1_leps2 = zeros(70,29); 
jfm_1_leps3 = zeros(70,29); 
jfm_1_leps4 = zeros(70,29); 
jfm_1_lepsmax1 = zeros(70,29); 
jfm_1_lepsmax2 = zeros(70,29); 
jfm_1_lepsmax3 = zeros(70,29); 
jfm_1_lepsmax4 = zeros(70,29); 
jfm_1_sk1 = zeros(29,1); 
jfm_1_sk2 = zeros(29,1); 
jfm_1_sk3 = zeros(29,1); 
jfm_1_sk4 = zeros(29,1); 
 
%Divide out the forecast values into each alternative for this lag time 
jfm_1_qf1 = jfm_fall(:,117:145); 
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jfm_1_qf2 = jfm_fall(:,146:174); 
jfm_1_qf3 = jfm_fall(:,175:203); 
jfm_1_qf4 = jfm_fall(:,204:232); 
 
%Find the Probabilities to define the y-axis of the eCDF.  Create seperate 
%eCDF function for the Apr-Jul observations and the Yearly observations. 
P = transpose((1:size(qoyr,1))/(size(qoyr,1)+1)); 
 
%Find the probabilities of the observed (yo) and forecasted (yf) values 
%on the PDF by interpolating along the qopdf data. 
for loc = 1:29 
for yr = 1:70 
    yoy(yr,loc) = interp1(sort(qoyr(:,loc)),P,qoyr(yr,loc),'linear','extrap' ); 
     
    jfm_1_yf1(yr,loc) = interp1(sort(qoyr(:,loc)),P,jfm_1_qf1(yr,loc),'linear','extrap' ); 
    jfm_1_yf2(yr,loc) = interp1(sort(qoyr(:,loc)),P,jfm_1_qf2(yr,loc),'linear','extrap' ); 
    jfm_1_yf3(yr,loc) = interp1(sort(qoyr(:,loc)),P,jfm_1_qf3(yr,loc),'linear','extrap' ); 
    jfm_1_yf4(yr,loc) = interp1(sort(qoyr(:,loc)),P,jfm_1_qf4(yr,loc),'linear','extrap' ); 
end 
end 
 
%Calculate the max possible LEPS scores 
for loc = 1:29 
for yr = 1:70 
    jfm_1_lepsmax1(yr,loc) = (3*(1-abs(jfm_1_yf1(yr,loc) - jfm_1_yf1(yr,loc))... 
        + jfm_1_yf1(yr,loc)^2 - jfm_1_yf1(yr,loc) + jfm_1_yf1(yr,loc)^2 - 
jfm_1_yf1(yr,loc)) - 1); 
    jfm_1_lepsmax2(yr,loc) = (3*(1-abs(jfm_1_yf2(yr,loc) - jfm_1_yf2(yr,loc))... 
        + jfm_1_yf2(yr,loc)^2 - jfm_1_yf2(yr,loc) + jfm_1_yf2(yr,loc)^2 - 
jfm_1_yf2(yr,loc)) - 1); 
    jfm_1_lepsmax3(yr,loc) = (3*(1-abs(jfm_1_yf3(yr,loc) - jfm_1_yf3(yr,loc))... 
        + jfm_1_yf3(yr,loc)^2 - jfm_1_yf3(yr,loc) + jfm_1_yf3(yr,loc)^2 - 
jfm_1_yf3(yr,loc)) - 1); 
    jfm_1_lepsmax4(yr,loc) = (3*(1-abs(jfm_1_yf4(yr,loc) - jfm_1_yf4(yr,loc))... 
        + jfm_1_yf4(yr,loc)^2 - jfm_1_yf4(yr,loc) + jfm_1_yf4(yr,loc)^2 - 
jfm_1_yf4(yr,loc)) - 1); 
end 
end 
 
%Calculate the LEPS scores from the yfx and the yo matrices 
for loc = 1:29 
for yr = 1:70 
    jfm_1_leps1(yr,loc) = (3*(1-abs(jfm_1_yf1(yr,loc) - yoy(yr,loc))... 
        + jfm_1_yf1(yr,loc)^2 - jfm_1_yf1(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    jfm_1_leps2(yr,loc) = (3*(1-abs(jfm_1_yf2(yr,loc) - yoy(yr,loc))... 
        + jfm_1_yf2(yr,loc)^2 - jfm_1_yf2(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
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    jfm_1_leps3(yr,loc) = (3*(1-abs(jfm_1_yf3(yr,loc) - yoy(yr,loc))... 
        + jfm_1_yf3(yr,loc)^2 - jfm_1_yf3(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    jfm_1_leps4(yr,loc) = (3*(1-abs(jfm_1_yf4(yr,loc) - yoy(yr,loc))... 
        + jfm_1_yf4(yr,loc)^2 - jfm_1_yf4(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
end 
end 
 
%Calculate the Average Skill score at each location 
for loc = 1:29 
    if sum(jfm_1_leps1(:,loc))>=0 
        jfm_1_sk1(loc) = sum(jfm_1_leps1(:,loc))/sum(jfm_1_lepsmax1(:,loc)); 
    else 
        jfm_1_sk1(loc) = sum(jfm_1_leps1(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(jfm_1_leps2(:,loc))>=0 
        jfm_1_sk2(loc) = sum(jfm_1_leps2(:,loc))/sum(jfm_1_lepsmax2(:,loc)); 
    else 
        jfm_1_sk2(loc) = sum(jfm_1_leps2(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(jfm_1_leps3(:,loc))>=0 
        jfm_1_sk3(loc) = sum(jfm_1_leps3(:,loc))/sum(jfm_1_lepsmax3(:,loc)); 
    else 
        jfm_1_sk3(loc) = sum(jfm_1_leps3(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(jfm_1_leps4(:,loc))>=0 
        jfm_1_sk4(loc) = sum(jfm_1_leps4(:,loc))/sum(jfm_1_lepsmax4(:,loc)); 
    else 
        jfm_1_sk4(loc) = sum(jfm_1_leps4(:,loc))/sum(lepsmin(:,loc)); 
    end 
end 
 
jfm_1_sk = 100*[jfm_1_sk1 jfm_1_sk2 jfm_1_sk3 jfm_1_sk4]; 
 
%--------------------------------------------- 
% Recalculate for JFM | Lag = 2 Years 
%--------------------------------------------- 
jfm_2_yf1 = zeros(70,29); 
jfm_2_yf2 = zeros(70,29); 
jfm_2_yf3 = zeros(70,29); 
jfm_2_yf4 = zeros(70,29); 
jfm_2_leps1 = zeros(70,29); 
jfm_2_leps2 = zeros(70,29); 
jfm_2_leps3 = zeros(70,29); 
jfm_2_leps4 = zeros(70,29); 
jfm_2_lepsmax1 = zeros(70,29); 
jfm_2_lepsmax2 = zeros(70,29); 
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jfm_2_lepsmax3 = zeros(70,29); 
jfm_2_lepsmax4 = zeros(70,29); 
jfm_2_sk1 = zeros(29,1); 
jfm_2_sk2 = zeros(29,1); 
jfm_2_sk3 = zeros(29,1); 
jfm_2_sk4 = zeros(29,1); 
 
%Divide out the forecast values into each alternative for this lag time 
jfm_2_qf1 = jfm_fall(:,233:261); 
jfm_2_qf2 = jfm_fall(:,262:290); 
jfm_2_qf3 = jfm_fall(:,291:319); 
jfm_2_qf4 = jfm_fall(:,320:348); 
 
%Find the Probabilities to define the y-axis of the eCDF.  Create seperate 
%eCDF function for the Apr-Jul observations and the Yearly observations. 
P = transpose((1:size(qoyr,1))/(size(qoyr,1)+1)); 
 
%Find the probabilities of the observed (yo) and forecasted (yf) values 
%on the PDF by interpolating along the qopdf data. 
for loc = 1:29 
for yr = 1:70 
    yoy(yr,loc) = interp1(sort(qoyr(:,loc)),P,qoyr(yr,loc),'linear','extrap' ); 
     
    jfm_2_yf1(yr,loc) = interp1(sort(qoyr(:,loc)),P,jfm_2_qf1(yr,loc),'linear','extrap' ); 
    jfm_2_yf2(yr,loc) = interp1(sort(qoyr(:,loc)),P,jfm_2_qf2(yr,loc),'linear','extrap' ); 
    jfm_2_yf3(yr,loc) = interp1(sort(qoyr(:,loc)),P,jfm_2_qf3(yr,loc),'linear','extrap' ); 
    jfm_2_yf4(yr,loc) = interp1(sort(qoyr(:,loc)),P,jfm_2_qf4(yr,loc),'linear','extrap' ); 
end 
end 
 
%Calculate the max possible LEPS scores 
for loc = 1:29 
for yr = 1:70 
    jfm_2_lepsmax1(yr,loc) = (3*(1-abs(jfm_2_yf1(yr,loc) - jfm_2_yf1(yr,loc))... 
        + jfm_2_yf1(yr,loc)^2 - jfm_2_yf1(yr,loc) + jfm_2_yf1(yr,loc)^2 - 
jfm_2_yf1(yr,loc)) - 1); 
    jfm_2_lepsmax2(yr,loc) = (3*(1-abs(jfm_2_yf2(yr,loc) - jfm_2_yf2(yr,loc))... 
        + jfm_2_yf2(yr,loc)^2 - jfm_2_yf2(yr,loc) + jfm_2_yf2(yr,loc)^2 - 
jfm_2_yf2(yr,loc)) - 1); 
    jfm_2_lepsmax3(yr,loc) = (3*(1-abs(jfm_2_yf3(yr,loc) - jfm_2_yf3(yr,loc))... 
        + jfm_2_yf3(yr,loc)^2 - jfm_2_yf3(yr,loc) + jfm_2_yf3(yr,loc)^2 - 
jfm_2_yf3(yr,loc)) - 1); 
    jfm_2_lepsmax4(yr,loc) = (3*(1-abs(jfm_2_yf4(yr,loc) - jfm_2_yf4(yr,loc))... 
        + jfm_2_yf4(yr,loc)^2 - jfm_2_yf4(yr,loc) + jfm_2_yf4(yr,loc)^2 - 
jfm_2_yf4(yr,loc)) - 1); 
end 
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end 
 
%Calculate the LEPS scores from the yfx and the yo matrices 
for loc = 1:29 
for yr = 1:70 
    jfm_2_leps1(yr,loc) = (3*(1-abs(jfm_2_yf1(yr,loc) - yoy(yr,loc))... 
        + jfm_2_yf1(yr,loc)^2 - jfm_2_yf1(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    jfm_2_leps2(yr,loc) = (3*(1-abs(jfm_2_yf2(yr,loc) - yoy(yr,loc))... 
        + jfm_2_yf2(yr,loc)^2 - jfm_2_yf2(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    jfm_2_leps3(yr,loc) = (3*(1-abs(jfm_2_yf3(yr,loc) - yoy(yr,loc))... 
        + jfm_2_yf3(yr,loc)^2 - jfm_2_yf3(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    jfm_2_leps4(yr,loc) = (3*(1-abs(jfm_2_yf4(yr,loc) - yoy(yr,loc))... 
        + jfm_2_yf4(yr,loc)^2 - jfm_2_yf4(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
end 
end 
 
%Calculate the Average Skill score at each location 
for loc = 1:29 
    if sum(jfm_2_leps1(:,loc))>=0 
        jfm_2_sk1(loc) = sum(jfm_2_leps1(:,loc))/sum(jfm_2_lepsmax1(:,loc)); 
    else 
        jfm_2_sk1(loc) = sum(jfm_2_leps1(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(jfm_2_leps2(:,loc))>=0 
        jfm_2_sk2(loc) = sum(jfm_2_leps2(:,loc))/sum(jfm_2_lepsmax2(:,loc)); 
    else 
        jfm_2_sk2(loc) = sum(jfm_2_leps2(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(jfm_2_leps3(:,loc))>=0 
        jfm_2_sk3(loc) = sum(jfm_2_leps3(:,loc))/sum(jfm_2_lepsmax3(:,loc)); 
    else 
        jfm_2_sk3(loc) = sum(jfm_2_leps3(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(jfm_2_leps4(:,loc))>=0 
        jfm_2_sk4(loc) = sum(jfm_2_leps4(:,loc))/sum(jfm_2_lepsmax4(:,loc)); 
    else 
        jfm_2_sk4(loc) = sum(jfm_2_leps4(:,loc))/sum(lepsmin(:,loc)); 
    end 
end 
 
jfm_2_sk = 100*[jfm_2_sk1 jfm_2_sk2 jfm_2_sk3 jfm_2_sk4]; 
 
%------------------------------- 
%Recalc for FMA | lag = 0 
%------------------------------- 
fma_0_yf1 = zeros(70,29); 
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fma_0_yf2 = zeros(70,29); 
fma_0_yf3 = zeros(70,29); 
fma_0_yf4 = zeros(70,29); 
fma_0_leps1 = zeros(70,29); 
fma_0_leps2 = zeros(70,29); 
fma_0_leps3 = zeros(70,29); 
fma_0_leps4 = zeros(70,29); 
fma_0_lepsmax1 = zeros(70,29); 
fma_0_lepsmax2 = zeros(70,29); 
fma_0_lepsmax3 = zeros(70,29); 
fma_0_lepsmax4 = zeros(70,29); 
fma_0_sk1 = zeros(29,1); 
fma_0_sk2 = zeros(29,1); 
fma_0_sk3 = zeros(29,1); 
fma_0_sk4 = zeros(29,1); 
 
%Divide out the forecast values into each alternative for this lag time 
fma_0_qf1 = fma_fall(:,1:29); 
fma_0_qf2 = fma_fall(:,30:58); 
fma_0_qf3 = fma_fall(:,59:87); 
fma_0_qf4 = fma_fall(:,88:116); 
 
%Find the Probabilities to define the y-axis of the eCDF.  Create seperate 
%eCDF function for the Apr-Jul observations and the Yearly observations. 
P = transpose((1:size(qoyr,1))/(size(qoyr,1)+1)); 
 
%Find the probabilities of the observed (yo) and forecasted (yf) values 
%on the PDF by interpolating along the qopdf data. 
for loc = 1:29 
for yr = 1:70 
    yoy(yr,loc) = interp1(sort(qoyr(:,loc)),P,qoyr(yr,loc),'linear','extrap' ); 
     
    fma_0_yf1(yr,loc) = interp1(sort(qoyr(:,loc)),P,fma_0_qf1(yr,loc),'linear','extrap' ); 
    fma_0_yf2(yr,loc) = interp1(sort(qoyr(:,loc)),P,fma_0_qf2(yr,loc),'linear','extrap' ); 
    fma_0_yf3(yr,loc) = interp1(sort(qoyr(:,loc)),P,fma_0_qf3(yr,loc),'linear','extrap' ); 
    fma_0_yf4(yr,loc) = interp1(sort(qoyr(:,loc)),P,fma_0_qf4(yr,loc),'linear','extrap' ); 
end 
end 
 
% Calculate the min LEPS Scores possible from the April-July and Yearly 
% volumes 
for loc = 1:29 
for yr = 1:70   
if yoy(yr,loc)>=0.5 
    lepsmin(yr,loc) = (3*(1-abs(0 - yoy(yr,loc)) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
else 
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    lepsmin(yr,loc) = (3*(1-abs(1 - yoy(yr,loc)) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
end 
end 
end 
 
%Calculate the max possible LEPS scores 
for loc = 1:29 
for yr = 1:70 
    fma_0_lepsmax1(yr,loc) = (3*(1-abs(fma_0_yf1(yr,loc) - fma_0_yf1(yr,loc))... 
        + fma_0_yf1(yr,loc)^2 - fma_0_yf1(yr,loc) + fma_0_yf1(yr,loc)^2 - 
fma_0_yf1(yr,loc)) - 1); 
    fma_0_lepsmax2(yr,loc) = (3*(1-abs(fma_0_yf2(yr,loc) - fma_0_yf2(yr,loc))... 
        + fma_0_yf2(yr,loc)^2 - fma_0_yf2(yr,loc) + fma_0_yf2(yr,loc)^2 - 
fma_0_yf2(yr,loc)) - 1); 
    fma_0_lepsmax3(yr,loc) = (3*(1-abs(fma_0_yf3(yr,loc) - fma_0_yf3(yr,loc))... 
        + fma_0_yf3(yr,loc)^2 - fma_0_yf3(yr,loc) + fma_0_yf3(yr,loc)^2 - 
fma_0_yf3(yr,loc)) - 1); 
    fma_0_lepsmax4(yr,loc) = (3*(1-abs(fma_0_yf4(yr,loc) - fma_0_yf4(yr,loc))... 
        + fma_0_yf4(yr,loc)^2 - fma_0_yf4(yr,loc) + fma_0_yf4(yr,loc)^2 - 
fma_0_yf4(yr,loc)) - 1); 
end 
end 
 
%Calculate the LEPS scores from the yfx and the yo matrices 
for loc = 1:29 
for yr = 1:70 
    fma_0_leps1(yr,loc) = (3*(1-abs(fma_0_yf1(yr,loc) - yoy(yr,loc))... 
        + fma_0_yf1(yr,loc)^2 - fma_0_yf1(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    fma_0_leps2(yr,loc) = (3*(1-abs(fma_0_yf2(yr,loc) - yoy(yr,loc))... 
        + fma_0_yf2(yr,loc)^2 - fma_0_yf2(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    fma_0_leps3(yr,loc) = (3*(1-abs(fma_0_yf3(yr,loc) - yoy(yr,loc))... 
        + fma_0_yf3(yr,loc)^2 - fma_0_yf3(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    fma_0_leps4(yr,loc) = (3*(1-abs(fma_0_yf4(yr,loc) - yoy(yr,loc))... 
        + fma_0_yf4(yr,loc)^2 - fma_0_yf4(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
end 
end 
 
%Calculate the Average Skill score at each location 
for loc = 1:29 
    if sum(fma_0_leps1(:,loc))>=0 
        fma_0_sk1(loc) = sum(fma_0_leps1(:,loc))/sum(fma_0_lepsmax1(:,loc)); 
    else 
        fma_0_sk1(loc) = sum(fma_0_leps1(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(fma_0_leps2(:,loc))>=0 
        fma_0_sk2(loc) = sum(fma_0_leps2(:,loc))/sum(fma_0_lepsmax2(:,loc)); 
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    else 
        fma_0_sk2(loc) = sum(fma_0_leps2(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(fma_0_leps3(:,loc))>=0 
        fma_0_sk3(loc) = sum(fma_0_leps3(:,loc))/sum(fma_0_lepsmax3(:,loc)); 
    else 
        fma_0_sk3(loc) = sum(fma_0_leps3(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(fma_0_leps4(:,loc))>=0 
        fma_0_sk4(loc) = sum(fma_0_leps4(:,loc))/sum(fma_0_lepsmax4(:,loc)); 
    else 
        fma_0_sk4(loc) = sum(fma_0_leps4(:,loc))/sum(lepsmin(:,loc)); 
    end 
end 
 
fma_0_sk = 100*[fma_0_sk1 fma_0_sk2 fma_0_sk3 fma_0_sk4]; 
 
%--------------------------------------------- 
% Recalculate for FMA | Lag = 1Year 
%--------------------------------------------- 
fma_1_yf1 = zeros(70,29); 
fma_1_yf2 = zeros(70,29); 
fma_1_yf3 = zeros(70,29); 
fma_1_yf4 = zeros(70,29); 
fma_1_leps1 = zeros(70,29); 
fma_1_leps2 = zeros(70,29); 
fma_1_leps3 = zeros(70,29); 
fma_1_leps4 = zeros(70,29); 
fma_1_lepsmax1 = zeros(70,29); 
fma_1_lepsmax2 = zeros(70,29); 
fma_1_lepsmax3 = zeros(70,29); 
fma_1_lepsmax4 = zeros(70,29); 
fma_1_sk1 = zeros(29,1); 
fma_1_sk2 = zeros(29,1); 
fma_1_sk3 = zeros(29,1); 
fma_1_sk4 = zeros(29,1); 
 
%Divide out the forecast values into each alternative for this lag time 
fma_1_qf1 = fma_fall(:,117:145); 
fma_1_qf2 = fma_fall(:,146:174); 
fma_1_qf3 = fma_fall(:,175:203); 
fma_1_qf4 = fma_fall(:,204:232); 
 
%Find the Probabilities to define the y-axis of the eCDF.  Create seperate 
%eCDF function for the Apr-Jul observations and the Yearly observations. 
P = transpose((1:size(qoyr,1))/(size(qoyr,1)+1)); 
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%Find the probabilities of the observed (yo) and forecasted (yf) values 
%on the PDF by interpolating along the qopdf data. 
for loc = 1:29 
for yr = 1:70 
    yoy(yr,loc) = interp1(sort(qoyr(:,loc)),P,qoyr(yr,loc),'linear','extrap' ); 
     
    fma_1_yf1(yr,loc) = interp1(sort(qoyr(:,loc)),P,fma_1_qf1(yr,loc),'linear','extrap' ); 
    fma_1_yf2(yr,loc) = interp1(sort(qoyr(:,loc)),P,fma_1_qf2(yr,loc),'linear','extrap' ); 
    fma_1_yf3(yr,loc) = interp1(sort(qoyr(:,loc)),P,fma_1_qf3(yr,loc),'linear','extrap' ); 
    fma_1_yf4(yr,loc) = interp1(sort(qoyr(:,loc)),P,fma_1_qf4(yr,loc),'linear','extrap' ); 
end 
end 
 
%Calculate the max possible LEPS scores 
for loc = 1:29 
for yr = 1:70 
    fma_1_lepsmax1(yr,loc) = (3*(1-abs(fma_1_yf1(yr,loc) - fma_1_yf1(yr,loc))... 
        + fma_1_yf1(yr,loc)^2 - fma_1_yf1(yr,loc) + fma_1_yf1(yr,loc)^2 - 
fma_1_yf1(yr,loc)) - 1); 
    fma_1_lepsmax2(yr,loc) = (3*(1-abs(fma_1_yf2(yr,loc) - fma_1_yf2(yr,loc))... 
        + fma_1_yf2(yr,loc)^2 - fma_1_yf2(yr,loc) + fma_1_yf2(yr,loc)^2 - 
fma_1_yf2(yr,loc)) - 1); 
    fma_1_lepsmax3(yr,loc) = (3*(1-abs(fma_1_yf3(yr,loc) - fma_1_yf3(yr,loc))... 
        + fma_1_yf3(yr,loc)^2 - fma_1_yf3(yr,loc) + fma_1_yf3(yr,loc)^2 - 
fma_1_yf3(yr,loc)) - 1); 
    fma_1_lepsmax4(yr,loc) = (3*(1-abs(fma_1_yf4(yr,loc) - fma_1_yf4(yr,loc))... 
        + fma_1_yf4(yr,loc)^2 - fma_1_yf4(yr,loc) + fma_1_yf4(yr,loc)^2 - 
fma_1_yf4(yr,loc)) - 1); 
end 
end 
 
%Calculate the LEPS scores from the yfx and the yo matrices 
for loc = 1:29 
for yr = 1:70 
    fma_1_leps1(yr,loc) = (3*(1-abs(fma_1_yf1(yr,loc) - yoy(yr,loc))... 
        + fma_1_yf1(yr,loc)^2 - fma_1_yf1(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    fma_1_leps2(yr,loc) = (3*(1-abs(fma_1_yf2(yr,loc) - yoy(yr,loc))... 
        + fma_1_yf2(yr,loc)^2 - fma_1_yf2(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    fma_1_leps3(yr,loc) = (3*(1-abs(fma_1_yf3(yr,loc) - yoy(yr,loc))... 
        + fma_1_yf3(yr,loc)^2 - fma_1_yf3(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    fma_1_leps4(yr,loc) = (3*(1-abs(fma_1_yf4(yr,loc) - yoy(yr,loc))... 
        + fma_1_yf4(yr,loc)^2 - fma_1_yf4(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
end 
end 
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%Calculate the Average Skill score at each location 
for loc = 1:29 
    if sum(fma_1_leps1(:,loc))>=0 
        fma_1_sk1(loc) = sum(fma_1_leps1(:,loc))/sum(fma_1_lepsmax1(:,loc)); 
    else 
        fma_1_sk1(loc) = sum(fma_1_leps1(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(fma_1_leps2(:,loc))>=0 
        fma_1_sk2(loc) = sum(fma_1_leps2(:,loc))/sum(fma_1_lepsmax2(:,loc)); 
    else 
        fma_1_sk2(loc) = sum(fma_1_leps2(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(fma_1_leps3(:,loc))>=0 
        fma_1_sk3(loc) = sum(fma_1_leps3(:,loc))/sum(fma_1_lepsmax3(:,loc)); 
    else 
        fma_1_sk3(loc) = sum(fma_1_leps3(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(fma_1_leps4(:,loc))>=0 
        fma_1_sk4(loc) = sum(fma_1_leps4(:,loc))/sum(fma_1_lepsmax4(:,loc)); 
    else 
        fma_1_sk4(loc) = sum(fma_1_leps4(:,loc))/sum(lepsmin(:,loc)); 
    end 
end 
 
fma_1_sk = 100*[fma_1_sk1 fma_1_sk2 fma_1_sk3 fma_1_sk4]; 
 
%--------------------------------------------- 
% Recalculate for FMA | Lag = 2 Years 
%--------------------------------------------- 
fma_2_yf1 = zeros(70,29); 
fma_2_yf2 = zeros(70,29); 
fma_2_yf3 = zeros(70,29); 
fma_2_yf4 = zeros(70,29); 
fma_2_leps1 = zeros(70,29); 
fma_2_leps2 = zeros(70,29); 
fma_2_leps3 = zeros(70,29); 
fma_2_leps4 = zeros(70,29); 
fma_2_lepsmax1 = zeros(70,29); 
fma_2_lepsmax2 = zeros(70,29); 
fma_2_lepsmax3 = zeros(70,29); 
fma_2_lepsmax4 = zeros(70,29); 
fma_2_sk1 = zeros(29,1); 
fma_2_sk2 = zeros(29,1); 
fma_2_sk3 = zeros(29,1); 
fma_2_sk4 = zeros(29,1); 
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%Divide out the forecast values into each alternative for this lag time 
fma_2_qf1 = fma_fall(:,233:261); 
fma_2_qf2 = fma_fall(:,262:290); 
fma_2_qf3 = fma_fall(:,291:319); 
fma_2_qf4 = fma_fall(:,320:348); 
 
%Find the Probabilities to define the y-axis of the eCDF.  Create seperate 
%eCDF function for the Apr-Jul observations and the Yearly observations. 
P = transpose((1:size(qoyr,1))/(size(qoyr,1)+1)); 
 
%Find the probabilities of the observed (yo) and forecasted (yf) values 
%on the PDF by interpolating along the qopdf data. 
for loc = 1:29 
for yr = 1:70 
    yoy(yr,loc) = interp1(sort(qoyr(:,loc)),P,qoyr(yr,loc),'linear','extrap' ); 
     
    fma_2_yf1(yr,loc) = interp1(sort(qoyr(:,loc)),P,fma_2_qf1(yr,loc),'linear','extrap' ); 
    fma_2_yf2(yr,loc) = interp1(sort(qoyr(:,loc)),P,fma_2_qf2(yr,loc),'linear','extrap' ); 
    fma_2_yf3(yr,loc) = interp1(sort(qoyr(:,loc)),P,fma_2_qf3(yr,loc),'linear','extrap' ); 
    fma_2_yf4(yr,loc) = interp1(sort(qoyr(:,loc)),P,fma_2_qf4(yr,loc),'linear','extrap' ); 
end 
end 
 
%Calculate the max possible LEPS scores 
for loc = 1:29 
for yr = 1:70 
    fma_2_lepsmax1(yr,loc) = (3*(1-abs(fma_2_yf1(yr,loc) - fma_2_yf1(yr,loc))... 
        + fma_2_yf1(yr,loc)^2 - fma_2_yf1(yr,loc) + fma_2_yf1(yr,loc)^2 - 
fma_2_yf1(yr,loc)) - 1); 
    fma_2_lepsmax2(yr,loc) = (3*(1-abs(fma_2_yf2(yr,loc) - fma_2_yf2(yr,loc))... 
        + fma_2_yf2(yr,loc)^2 - fma_2_yf2(yr,loc) + fma_2_yf2(yr,loc)^2 - 
fma_2_yf2(yr,loc)) - 1); 
    fma_2_lepsmax3(yr,loc) = (3*(1-abs(fma_2_yf3(yr,loc) - fma_2_yf3(yr,loc))... 
        + fma_2_yf3(yr,loc)^2 - fma_2_yf3(yr,loc) + fma_2_yf3(yr,loc)^2 - 
fma_2_yf3(yr,loc)) - 1); 
    fma_2_lepsmax4(yr,loc) = (3*(1-abs(fma_2_yf4(yr,loc) - fma_2_yf4(yr,loc))... 
        + fma_2_yf4(yr,loc)^2 - fma_2_yf4(yr,loc) + fma_2_yf4(yr,loc)^2 - 
fma_2_yf4(yr,loc)) - 1); 
end 
end 
 
%Calculate the LEPS scores from the yfx and the yo matrices 
for loc = 1:29 
for yr = 1:70 
    fma_2_leps1(yr,loc) = (3*(1-abs(fma_2_yf1(yr,loc) - yoy(yr,loc))... 
        + fma_2_yf1(yr,loc)^2 - fma_2_yf1(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
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    fma_2_leps2(yr,loc) = (3*(1-abs(fma_2_yf2(yr,loc) - yoy(yr,loc))... 
        + fma_2_yf2(yr,loc)^2 - fma_2_yf2(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    fma_2_leps3(yr,loc) = (3*(1-abs(fma_2_yf3(yr,loc) - yoy(yr,loc))... 
        + fma_2_yf3(yr,loc)^2 - fma_2_yf3(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
    fma_2_leps4(yr,loc) = (3*(1-abs(fma_2_yf4(yr,loc) - yoy(yr,loc))... 
        + fma_2_yf4(yr,loc)^2 - fma_2_yf4(yr,loc) + yoy(yr,loc)^2 - yoy(yr,loc)) - 1); 
end 
end 
 
%Calculate the Average Skill score at each location 
for loc = 1:29 
    if sum(fma_2_leps1(:,loc))>=0 
        fma_2_sk1(loc) = sum(fma_2_leps1(:,loc))/sum(fma_2_lepsmax1(:,loc)); 
    else 
        fma_2_sk1(loc) = sum(fma_2_leps1(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(fma_2_leps2(:,loc))>=0 
        fma_2_sk2(loc) = sum(fma_2_leps2(:,loc))/sum(fma_2_lepsmax2(:,loc)); 
    else 
        fma_2_sk2(loc) = sum(fma_2_leps2(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(fma_2_leps3(:,loc))>=0 
        fma_2_sk3(loc) = sum(fma_2_leps3(:,loc))/sum(fma_2_lepsmax3(:,loc)); 
    else 
        fma_2_sk3(loc) = sum(fma_2_leps3(:,loc))/sum(lepsmin(:,loc)); 
    end 
    if sum(fma_2_leps4(:,loc))>=0 
        fma_2_sk4(loc) = sum(fma_2_leps4(:,loc))/sum(fma_2_lepsmax4(:,loc)); 
    else 
        fma_2_sk4(loc) = sum(fma_2_leps4(:,loc))/sum(lepsmin(:,loc)); 
    end 
end 
 
fma_2_sk = 100*[fma_2_sk1 fma_2_sk2 fma_2_sk3 fma_2_sk4]; 
 
%-------------------------- 
%EXPORT RESULTS TO EXCEL 
sk_0675 = [djf_0_sk jfm_0_sk fma_0_sk djf_1_sk jfm_1_sk fma_1_sk djf_2_sk 
jfm_2_sk fma_2_sk]; 
xlswrite('L:/Kenneth Data/Matlab/Phase2/Hondo.xls',sk_0675, 'LEPS','C2'); 
save sk_0675 sk_0675 
 

A1.5.4 Relative Error Calculation 

%-------------------------------------- 
%  Read in Input Data 
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%-------------------------------------- 
%Create matrices of observed values.  Use the following to know which 
%observed values to be used: 
%Resampling Data: Rows 71:100 for both qoaj_all and qoyr_all (1976 - 2005) 
%Observation Data: Rows 1:70 (qoaj_all and qoyr_all) 1906 - 1975 
 
%Read in observed values stored in the spreadsheet 
load qoyr_all 
 
%Observed Data Matrix 
qo = qoyr_all(1:70,:); 
 
%Resampling Data Matrix 
qoy = qoyr_all(71:100,:); 
 
%Create matrix of forecasts using just the 30-yr average 
f30 = mean(qoy); 
 
%Find the realtive error matrix between the mean forecasts and the observed streamflow 
re30 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        re30(yr,loc) = (f30(loc)/qo(yr,loc))-1; 
    end 
end 
 
%Find the mean of the relative errors at each location 
mre30 = mean(re30); 
 
%Find the mean of the relative errors at all locations for each year 
yre30 = 100*mean(re30,2); 
 
%Read in Forecast values created with the forecasts.m command 
load f_0675 
djf_fall = f_0675(:,:,1)'; 
jfm_fall = f_0675(:,:,2)'; 
fma_fall = f_0675(:,:,3)'; 
 
%-------------------------------------- 
%  Run Analysis on DJF | Lag = 0 Year 
%-------------------------------------- 
 
%Divide out the forecast values into each alternative for this lag time 
djf_0_qf1 = djf_fall(1:29,:)'; 
djf_0_qf2 = djf_fall(30:58,:)'; 
djf_0_qf3 = djf_fall(59:87,:)'; 
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djf_0_qf4 = djf_fall(88:116,:)'; 
 
% Find the relative error between forecast values and observed values at 
% each station (the error matrix). 
djf_0_re1 = zeros(70,29); 
djf_0_re2 = zeros(70,29); 
djf_0_re3 = zeros(70,29); 
djf_0_re4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
djf_0_re1(yr,loc) = (djf_0_qf1(yr,loc)/qo(yr,loc))-1; 
djf_0_re2(yr,loc) = (djf_0_qf2(yr,loc)/qo(yr,loc))-1; 
djf_0_re3(yr,loc) = (djf_0_qf3(yr,loc)/qo(yr,loc))-1; 
djf_0_re4(yr,loc) = (djf_0_qf4(yr,loc)/qo(yr,loc))-1; 
    end 
end 
 
%Find the mean of the realtive errors at each qauge location 
djf_0_mre1 = mean(djf_0_re1); 
djf_0_mre2 = mean(djf_0_re2); 
djf_0_mre3 = mean(djf_0_re3); 
djf_0_mre4 = mean(djf_0_re4); 
 
djf_0_sk = 100*[djf_0_mre1' djf_0_mre2' djf_0_mre3' djf_0_mre4']; 
 
%Find the mean relative error at all stations for each year 
djf_0_yre1 = mean(djf_0_re1,2); 
djf_0_yre2 = mean(djf_0_re2,2); 
djf_0_yre3 = mean(djf_0_re3,2); 
djf_0_yre4 = mean(djf_0_re4,2); 
 
djf_0_y = 100*[djf_0_yre1 djf_0_yre2 djf_0_yre3 djf_0_yre4]; 
 
%-------------------------------------- 
%  Run Analysis on DJF | Lag = 1 Year 
%-------------------------------------- 
 
%Divide out the forecast values into each alternative for this lag time 
djf_1_qf1 = djf_fall(117:145,:)'; 
djf_1_qf2 = djf_fall(146:174,:)'; 
djf_1_qf3 = djf_fall(175:203,:)'; 
djf_1_qf4 = djf_fall(204:232,:)'; 
 
% Find the relative error between forecast values and observed values at 
% each station (the error matrix). 
djf_1_re1 = zeros(70,29); 
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djf_1_re2 = zeros(70,29); 
djf_1_re3 = zeros(70,29); 
djf_1_re4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        djf_1_re1(yr,loc) = (djf_1_qf1(yr,loc)/qo(yr,loc))-1; 
        djf_1_re2(yr,loc) = (djf_1_qf2(yr,loc)/qo(yr,loc))-1; 
        djf_1_re3(yr,loc) = (djf_1_qf3(yr,loc)/qo(yr,loc))-1; 
        djf_1_re4(yr,loc) = (djf_1_qf4(yr,loc)/qo(yr,loc))-1; 
    end 
end 
 
%Find the mean of the realtive errors at each qauge location 
djf_1_mre1 = mean(djf_1_re1); 
djf_1_mre2 = mean(djf_1_re2); 
djf_1_mre3 = mean(djf_1_re3); 
djf_1_mre4 = mean(djf_1_re4); 
 
djf_1_sk = 100*[djf_1_mre1' djf_1_mre2' djf_1_mre3' djf_1_mre4']; 
 
%Find the mean relative error at all stations for each year 
djf_1_yre1 = mean(djf_1_re1,2); 
djf_1_yre2 = mean(djf_1_re2,2); 
djf_1_yre3 = mean(djf_1_re3,2); 
djf_1_yre4 = mean(djf_1_re4,2); 
 
djf_1_y = 100*[djf_1_yre1 djf_1_yre2 djf_1_yre3 djf_1_yre4]; 
 
%-------------------------------------- 
%  Run Analysis on DJF | Lag = 2 Year 
%-------------------------------------- 
 
%Divide out the forecast values into each alternative for this lag time 
djf_2_qf1 = djf_fall(233:261,:)'; 
djf_2_qf2 = djf_fall(262:290,:)'; 
djf_2_qf3 = djf_fall(291:319,:)'; 
djf_2_qf4 = djf_fall(320:348,:)'; 
 
% Find the relative error between forecast values and observed values at 
% each station (the error matrix). 
djf_2_re1 = zeros(70,29); 
djf_2_re2 = zeros(70,29); 
djf_2_re3 = zeros(70,29); 
djf_2_re4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
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        djf_2_re1(yr,loc) = (djf_2_qf1(yr,loc)/qo(yr,loc))-1; 
        djf_2_re2(yr,loc) = (djf_2_qf2(yr,loc)/qo(yr,loc))-1; 
        djf_2_re3(yr,loc) = (djf_2_qf3(yr,loc)/qo(yr,loc))-1; 
        djf_2_re4(yr,loc) = (djf_2_qf4(yr,loc)/qo(yr,loc))-1; 
    end 
end 
 
%Find the mean of the realtive errors at each qauge location 
djf_2_mre1 = mean(djf_2_re1); 
djf_2_mre2 = mean(djf_2_re2); 
djf_2_mre3 = mean(djf_2_re3); 
djf_2_mre4 = mean(djf_2_re4); 
 
djf_2_sk = 100*[djf_2_mre1' djf_2_mre2' djf_2_mre3' djf_2_mre4']; 
 
%Find the mean relative error at all stations for each year 
djf_2_yre1 = mean(djf_2_re1,2); 
djf_2_yre2 = mean(djf_2_re2,2); 
djf_2_yre3 = mean(djf_2_re3,2); 
djf_2_yre4 = mean(djf_2_re4,2); 
 
djf_2_y = 100*[djf_2_yre1 djf_2_yre2 djf_2_yre3 djf_2_yre4]; 
 
%-------------------------------------- 
%  Run Analysis on JFM | Lag = 0 Year 
%-------------------------------------- 
 
%Divide out the forecast values into each alternative for this lag time 
jfm_0_qf1 = jfm_fall(1:29,:)'; 
jfm_0_qf2 = jfm_fall(30:58,:)'; 
jfm_0_qf3 = jfm_fall(59:87,:)'; 
jfm_0_qf4 = jfm_fall(88:116,:)'; 
 
% Find the relative error between forecast values and observed values at 
% each station (the error matrix). 
jfm_0_re1 = zeros(70,29); 
jfm_0_re2 = zeros(70,29); 
jfm_0_re3 = zeros(70,29); 
jfm_0_re4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        jfm_0_re1(yr,loc) = (jfm_0_qf1(yr,loc)/qo(yr,loc))-1; 
        jfm_0_re2(yr,loc) = (jfm_0_qf2(yr,loc)/qo(yr,loc))-1; 
        jfm_0_re3(yr,loc) = (jfm_0_qf3(yr,loc)/qo(yr,loc))-1; 
        jfm_0_re4(yr,loc) = (jfm_0_qf4(yr,loc)/qo(yr,loc))-1; 
    end 



www.manaraa.com

199 

end 
 
%Find the mean of the realtive errors at each qauge location 
jfm_0_mre1 = mean(jfm_0_re1); 
jfm_0_mre2 = mean(jfm_0_re2); 
jfm_0_mre3 = mean(jfm_0_re3); 
jfm_0_mre4 = mean(jfm_0_re4); 
 
jfm_0_sk = 100*[jfm_0_mre1' jfm_0_mre2' jfm_0_mre3' jfm_0_mre4']; 
 
%Find the mean relative error at all stations for each year 
jfm_0_yre1 = mean(jfm_0_re1,2); 
jfm_0_yre2 = mean(jfm_0_re2,2); 
jfm_0_yre3 = mean(jfm_0_re3,2); 
jfm_0_yre4 = mean(jfm_0_re4,2); 
 
jfm_0_y = 100*[jfm_0_yre1 jfm_0_yre2 jfm_0_yre3 jfm_0_yre4]; 
 
%-------------------------------------- 
%  Run Analysis on JFM | Lag = 1 Year 
%-------------------------------------- 
 
%Divide out the forecast values into each alternative for this lag time 
jfm_1_qf1 = jfm_fall(117:145,:)'; 
jfm_1_qf2 = jfm_fall(146:174,:)'; 
jfm_1_qf3 = jfm_fall(175:203,:)'; 
jfm_1_qf4 = jfm_fall(204:232,:)'; 
 
% Find the relative error between forecast values and observed values at 
% each station (the error matrix). 
jfm_1_re1 = zeros(70,29); 
jfm_1_re2 = zeros(70,29); 
jfm_1_re3 = zeros(70,29); 
jfm_1_re4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        jfm_1_re1(yr,loc) = (jfm_1_qf1(yr,loc)/qo(yr,loc))-1; 
        jfm_1_re2(yr,loc) = (jfm_1_qf2(yr,loc)/qo(yr,loc))-1; 
        jfm_1_re3(yr,loc) = (jfm_1_qf3(yr,loc)/qo(yr,loc))-1; 
        jfm_1_re4(yr,loc) = (jfm_1_qf4(yr,loc)/qo(yr,loc))-1; 
    end 
end 
 
%Find the mean of the realtive errors at each qauge location 
jfm_1_mre1 = mean(jfm_1_re1); 
jfm_1_mre2 = mean(jfm_1_re2); 
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jfm_1_mre3 = mean(jfm_1_re3); 
jfm_1_mre4 = mean(jfm_1_re4); 
 
jfm_1_sk = 100*[jfm_1_mre1' jfm_1_mre2' jfm_1_mre3' jfm_1_mre4']; 
 
%Find the mean relative error at all stations for each year 
jfm_1_yre1 = mean(jfm_1_re1,2); 
jfm_1_yre2 = mean(jfm_1_re2,2); 
jfm_1_yre3 = mean(jfm_1_re3,2); 
jfm_1_yre4 = mean(jfm_1_re4,2); 
 
jfm_1_y = 100*[jfm_1_yre1 jfm_1_yre2 jfm_1_yre3 jfm_1_yre4]; 
 
%-------------------------------------- 
%  Run Analysis on JFM | Lag = 2 Year 
%-------------------------------------- 
 
%Divide out the forecast values into each alternative for this lag time 
jfm_2_qf1 = jfm_fall(233:261,:)'; 
jfm_2_qf2 = jfm_fall(262:290,:)'; 
jfm_2_qf3 = jfm_fall(291:319,:)'; 
jfm_2_qf4 = jfm_fall(320:348,:)'; 
 
% Find the relative error between forecast values and observed values at 
% each station (the error matrix). 
jfm_2_re1 = zeros(70,29); 
jfm_2_re2 = zeros(70,29); 
jfm_2_re3 = zeros(70,29); 
jfm_2_re4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        jfm_2_re1(yr,loc) = (jfm_2_qf1(yr,loc)/qo(yr,loc))-1; 
        jfm_2_re2(yr,loc) = (jfm_2_qf2(yr,loc)/qo(yr,loc))-1; 
        jfm_2_re3(yr,loc) = (jfm_2_qf3(yr,loc)/qo(yr,loc))-1; 
        jfm_2_re4(yr,loc) = (jfm_2_qf4(yr,loc)/qo(yr,loc))-1; 
    end 
end 
 
%Find the mean of the realtive errors at each qauge location 
jfm_2_mre1 = mean(jfm_2_re1); 
jfm_2_mre2 = mean(jfm_2_re2); 
jfm_2_mre3 = mean(jfm_2_re3); 
jfm_2_mre4 = mean(jfm_2_re4); 
 
jfm_2_sk = 100*[jfm_2_mre1' jfm_2_mre2' jfm_2_mre3' jfm_2_mre4']; 
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%Find the mean relative error at all stations for each year 
jfm_2_yre1 = mean(jfm_2_re1,2); 
jfm_2_yre2 = mean(jfm_2_re2,2); 
jfm_2_yre3 = mean(jfm_2_re3,2); 
jfm_2_yre4 = mean(jfm_2_re4,2); 
 
jfm_2_y = 100*[jfm_2_yre1 jfm_2_yre2 jfm_2_yre3 jfm_2_yre4]; 
 
%-------------------------------------- 
%  Run Analysis on FMA | Lag = 0 Year 
%-------------------------------------- 
 
%Divide out the forecast values into each alternative for this lag time 
fma_0_qf1 = fma_fall(1:29,:)'; 
fma_0_qf2 = fma_fall(30:58,:)'; 
fma_0_qf3 = fma_fall(59:87,:)'; 
fma_0_qf4 = fma_fall(88:116,:)'; 
 
% Find the relative error between forecast values and observed values at 
% each station (the error matrix). 
fma_0_re1 = zeros(70,29); 
fma_0_re2 = zeros(70,29); 
fma_0_re3 = zeros(70,29); 
fma_0_re4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        fma_0_re1(yr,loc) = (fma_0_qf1(yr,loc)/qo(yr,loc))-1; 
        fma_0_re2(yr,loc) = (fma_0_qf2(yr,loc)/qo(yr,loc))-1; 
        fma_0_re3(yr,loc) = (fma_0_qf3(yr,loc)/qo(yr,loc))-1; 
        fma_0_re4(yr,loc) = (fma_0_qf4(yr,loc)/qo(yr,loc))-1; 
    end 
end 
 
%Find the mean of the realtive errors at each qauge location 
fma_0_mre1 = mean(fma_0_re1); 
fma_0_mre2 = mean(fma_0_re2); 
fma_0_mre3 = mean(fma_0_re3); 
fma_0_mre4 = mean(fma_0_re4); 
 
fma_0_sk = 100*[fma_0_mre1' fma_0_mre2' fma_0_mre3' fma_0_mre4']; 
 
%Find the mean relative error at all stations for each year 
fma_0_yre1 = mean(fma_0_re1,2); 
fma_0_yre2 = mean(fma_0_re2,2); 
fma_0_yre3 = mean(fma_0_re3,2); 
fma_0_yre4 = mean(fma_0_re4,2); 
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fma_0_y = 100*[fma_0_yre1 fma_0_yre2 fma_0_yre3 fma_0_yre4]; 
 
%-------------------------------------- 
%  Run Analysis on FMA | Lag = 1 Year 
%-------------------------------------- 
 
%Divide out the forecast values into each alternative for this lag time 
fma_1_qf1 = fma_fall(117:145,:)'; 
fma_1_qf2 = fma_fall(146:174,:)'; 
fma_1_qf3 = fma_fall(175:203,:)'; 
fma_1_qf4 = fma_fall(204:232,:)'; 
 
% Find the relative error between forecast values and observed values at 
% each station (the error matrix). 
fma_1_re1 = zeros(70,29); 
fma_1_re2 = zeros(70,29); 
fma_1_re3 = zeros(70,29); 
fma_1_re4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        fma_1_re1(yr,loc) = (fma_1_qf1(yr,loc)/qo(yr,loc))-1; 
        fma_1_re2(yr,loc) = (fma_1_qf2(yr,loc)/qo(yr,loc))-1; 
        fma_1_re3(yr,loc) = (fma_1_qf3(yr,loc)/qo(yr,loc))-1; 
        fma_1_re4(yr,loc) = (fma_1_qf4(yr,loc)/qo(yr,loc))-1; 
    end 
end 
 
%Find the mean of the realtive errors at each qauge location 
fma_1_mre1 = mean(fma_1_re1); 
fma_1_mre2 = mean(fma_1_re2); 
fma_1_mre3 = mean(fma_1_re3); 
fma_1_mre4 = mean(fma_1_re4); 
 
fma_1_sk = 100*[fma_1_mre1' fma_1_mre2' fma_1_mre3' fma_1_mre4']; 
 
%Find the mean relative error at all stations for each year 
fma_1_yre1 = mean(fma_1_re1,2); 
fma_1_yre2 = mean(fma_1_re2,2); 
fma_1_yre3 = mean(fma_1_re3,2); 
fma_1_yre4 = mean(fma_1_re4,2); 
 
fma_1_y = 100*[fma_1_yre1 fma_1_yre2 fma_1_yre3 fma_1_yre4]; 
 
%-------------------------------------- 
%  Run Analysis on FMA | Lag = 2 Year 
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%-------------------------------------- 
 
%Divide out the forecast values into each alternative for this lag time 
fma_2_qf1 = fma_fall(233:261,:)'; 
fma_2_qf2 = fma_fall(262:290,:)'; 
fma_2_qf3 = fma_fall(291:319,:)'; 
fma_2_qf4 = fma_fall(320:348,:)'; 
 
% Find the relative error between forecast values and observed values at 
% each station (the error matrix). 
fma_2_re1 = zeros(70,29); 
fma_2_re2 = zeros(70,29); 
fma_2_re3 = zeros(70,29); 
fma_2_re4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        fma_2_re1(yr,loc) = (fma_2_qf1(yr,loc)/qo(yr,loc))-1; 
        fma_2_re2(yr,loc) = (fma_2_qf2(yr,loc)/qo(yr,loc))-1; 
        fma_2_re3(yr,loc) = (fma_2_qf3(yr,loc)/qo(yr,loc))-1; 
        fma_2_re4(yr,loc) = (fma_2_qf4(yr,loc)/qo(yr,loc))-1; 
    end 
end 
 
%Find the mean of the realtive errors at each qauge location 
fma_2_mre1 = mean(fma_2_re1); 
fma_2_mre2 = mean(fma_2_re2); 
fma_2_mre3 = mean(fma_2_re3); 
fma_2_mre4 = mean(fma_2_re4); 
 
fma_2_sk = 100*[fma_2_mre1' fma_2_mre2' fma_2_mre3' fma_2_mre4']; 
 
%Find the mean relative error at all stations for each year 
fma_2_yre1 = mean(fma_2_re1,2); 
fma_2_yre2 = mean(fma_2_re2,2); 
fma_2_yre3 = mean(fma_2_re3,2); 
fma_2_yre4 = mean(fma_2_re4,2); 
 
fma_2_y = 100*[fma_2_yre1 fma_2_yre2 fma_2_yre3 fma_2_yre4]; 
 
re_0675 = [djf_0_sk jfm_0_sk fma_0_sk djf_1_sk jfm_1_sk fma_1_sk djf_2_sk 
jfm_2_sk fma_2_sk]; 
xlswrite('L:/Kenneth Data/Matlab/Phase2/Hondo.xls',re_0675, 'RE','B2'); 
save re_0675 re_0675 
 
%Export error of forecasts to the hondo.xls spreadsheet 
e_djf_all = [djf_0_re1 djf_0_re2 djf_0_re3 djf_0_re4 ... 
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    djf_1_re1 djf_1_re2 djf_1_re3 djf_1_re4 ... 
    djf_2_re1 djf_2_re2 djf_2_re3 djf_2_re4]; 
e_jfm_all = [jfm_0_re1 jfm_0_re2 jfm_0_re3 jfm_0_re4 ... 
    jfm_1_re1 jfm_1_re2 jfm_1_re3 jfm_1_re4 ... 
    jfm_2_re1 jfm_2_re2 jfm_2_re3 jfm_2_re4]; 
e_fma_all = [fma_0_re1 fma_0_re2 fma_0_re3 fma_0_re4 ... 
    fma_1_re1 fma_1_re2 fma_1_re3 fma_1_re4 ... 
    fma_2_re1 fma_2_re2 fma_2_re3 fma_2_re4]; 
aaa = [e_djf_all e_jfm_all e_fma_all]; 
[dim1 dim2] = size(aaa); 
re_0675_all = reshape(aaa,dim1,dim2/3,3); 
save re_0675_all re_0675_all 
 

A1.5.5 Root Mean Squared Error Calculation 

%Read in observed data and analyze 
load qoyr_all 
 
%Create matrices of observed values.  Use the following to know which 
%observed values to be used: 
%Resampling Data: Rows 71:100 for both qoaj_all and qoyr_all (1976 - 2005) 
%Observation Data: Rows 1:70 (qoaj_all and qoyr_all) 1906 - 1975 
 
%Observed Data Matrix 
qo = qoyr_all(1:70,:); 
 
%Resampling Data Matrix 
qoy = qoyr_all(71:100,:); 
 
%Create matrix of forecasts using just the 30-yr average 
f30 = mean(qoy); 
 
%Find the error matrix between the mean forecasts and the observed streamflow 
e30 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        e30(yr,loc) = qo(yr,loc) - f30(loc); 
    end 
end 
 
%Square each element of the error matrix 
se30 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        se30(yr,loc) = e30(yr,loc)^2; 
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    end 
end 
 
%Find the mean of the square of the errors at each location 
mse30 = mean(se30); 
 
%Find the root of the mean sum of squares 
rmse30 = sqrt(mse30); 
 
%-------------------------------------- 
%  Run Analysis on DJF | Lag = 0 Year 
%-------------------------------------- 
 
%Read in Forecast values created with the forecasts.m command 
load f_0675 
djf_fall = f_0675(:,:,1)'; 
jfm_fall = f_0675(:,:,2)'; 
fma_fall = f_0675(:,:,3)'; 
 
%djf_fall = xlsread('L:/Kenneth Data/Matlab/Phase2/Hondo_f.xls','f_djf','C2:BT349'); 
%jfm_fall = xlsread('L:/Kenneth Data/Matlab/Phase2/Hondo_f.xls','f_jfm','C2:BT349'); 
%fma_fall = xlsread('L:/Kenneth Data/Matlab/Phase2/Hondo_f.xls','f_fma','C2:BT349'); 
 
%Divide out the forecast values into each alternative for this lag time 
djf_0_qf1 = djf_fall(1:29,:)'; 
djf_0_qf2 = djf_fall(30:58,:)'; 
djf_0_qf3 = djf_fall(59:87,:)'; 
djf_0_qf4 = djf_fall(88:116,:)'; 
 
% Find difference between forecast values and observed values at 
% each station (the error matrix). 
djf_0_e1 = qo - djf_0_qf1; 
djf_0_e2 = qo - djf_0_qf2; 
djf_0_e3 = qo - djf_0_qf3; 
djf_0_e4 = qo - djf_0_qf4; 
 
%Find the square of each element in the error matrix 
djf_0_se1 = zeros(70,29); 
djf_0_se2 = zeros(70,29); 
djf_0_se3 = zeros(70,29); 
djf_0_se4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        djf_0_se1(yr,loc) = djf_0_e1(yr,loc)^2; 
        djf_0_se2(yr,loc) = djf_0_e2(yr,loc)^2; 
        djf_0_se3(yr,loc) = djf_0_e3(yr,loc)^2; 
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        djf_0_se4(yr,loc) = djf_0_e4(yr,loc)^2; 
    end 
end 
 
%Find the mean of the squared errors at each qauge location 
djf_0_mse1 = mean(djf_0_se1,1); 
djf_0_mse2 = mean(djf_0_se2,1); 
djf_0_mse3 = mean(djf_0_se3,1); 
djf_0_mse4 = mean(djf_0_se4,1); 
 
%Find the root of the mean squared error at each location 
djf_0_rmse1 = sqrt(djf_0_mse1); 
djf_0_rmse2 = sqrt(djf_0_mse2); 
djf_0_rmse3 = sqrt(djf_0_mse3); 
djf_0_rmse4 = sqrt(djf_0_mse4); 
 
%Compare the results here with the rmse30 vector to assess 
%the improvement in the forecast skill compared to the 30-mean 
djf_0_comp1 = zeros(1,29); 
djf_0_comp2 = zeros(1,29); 
djf_0_comp3 = zeros(1,29); 
djf_0_comp4 = zeros(1,29); 
for loc = 1:29; 
    djf_0_comp1(loc) = (rmse30(loc) - djf_0_rmse1(loc)) / rmse30(loc); 
    djf_0_comp2(loc) = (rmse30(loc) - djf_0_rmse2(loc)) / rmse30(loc); 
    djf_0_comp3(loc) = (rmse30(loc) - djf_0_rmse3(loc)) / rmse30(loc); 
    djf_0_comp4(loc) = (rmse30(loc) - djf_0_rmse4(loc)) / rmse30(loc); 
end 
 
djf_0_sk = 100*[djf_0_comp1' djf_0_comp2' djf_0_comp3' djf_0_comp4']; 
 
%-------------------------------------- 
%  Run Analysis on DJF | Lag = 1 Year 
%-------------------------------------- 
%Divide out the forecast values into each alternative for this lag time 
djf_1_qf1 = djf_fall(117:145,:)'; 
djf_1_qf2 = djf_fall(146:174,:)'; 
djf_1_qf3 = djf_fall(175:203,:)'; 
djf_1_qf4 = djf_fall(204:232,:)'; 
 
% Find difference between forecast values and observed values at 
% each station (the error matrix). 
djf_1_e1 = qo - djf_1_qf1; 
djf_1_e2 = qo - djf_1_qf2; 
djf_1_e3 = qo - djf_1_qf3; 
djf_1_e4 = qo - djf_1_qf4; 
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%Find the square of each element in the error matrix 
djf_1_se1 = zeros(70,29); 
djf_1_se2 = zeros(70,29); 
djf_1_se3 = zeros(70,29); 
djf_1_se4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        djf_1_se1(yr,loc) = djf_1_e1(yr,loc)^2; 
        djf_1_se2(yr,loc) = djf_1_e2(yr,loc)^2; 
        djf_1_se3(yr,loc) = djf_1_e3(yr,loc)^2; 
        djf_1_se4(yr,loc) = djf_1_e4(yr,loc)^2; 
    end 
end 
 
%Find the mean of the squared errors at each qauge location 
djf_1_mse1 = mean(djf_1_se1,1); 
djf_1_mse2 = mean(djf_1_se2,1); 
djf_1_mse3 = mean(djf_1_se3,1); 
djf_1_mse4 = mean(djf_1_se4,1); 
 
%Find the root of the mean squared error at each location 
djf_1_rmse1 = sqrt(djf_1_mse1); 
djf_1_rmse2 = sqrt(djf_1_mse2); 
djf_1_rmse3 = sqrt(djf_1_mse3); 
djf_1_rmse4 = sqrt(djf_1_mse4); 
 
%Compare the results here with the rmse30 vector to assess 
%the improvement in the forecast skill compared to the 30-mean 
djf_1_comp1 = zeros(1,29); 
djf_1_comp2 = zeros(1,29); 
djf_1_comp3 = zeros(1,29); 
djf_1_comp4 = zeros(1,29); 
for loc = 1:29; 
    djf_1_comp1(loc) = (rmse30(loc) - djf_1_rmse1(loc)) / rmse30(loc); 
    djf_1_comp2(loc) = (rmse30(loc) - djf_1_rmse2(loc)) / rmse30(loc); 
    djf_1_comp3(loc) = (rmse30(loc) - djf_1_rmse3(loc)) / rmse30(loc); 
    djf_1_comp4(loc) = (rmse30(loc) - djf_1_rmse4(loc)) / rmse30(loc); 
end 
 
djf_1_sk = 100*[djf_1_comp1' djf_1_comp2' djf_1_comp3' djf_1_comp4']; 
 
%-------------------------------------- 
%  Run Analysis on DJF | Lag = 2 Year 
%-------------------------------------- 
%Divide out the forecast values into each alternative for this lag time 
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djf_2_qf1 = djf_fall(233:261,:)'; 
djf_2_qf2 = djf_fall(262:290,:)'; 
djf_2_qf3 = djf_fall(291:319,:)'; 
djf_2_qf4 = djf_fall(320:348,:)'; 
 
% Find difference between forecast values and observed values at 
% each station (the error matrix). 
djf_2_e1 = qo - djf_2_qf1; 
djf_2_e2 = qo - djf_2_qf2; 
djf_2_e3 = qo - djf_2_qf3; 
djf_2_e4 = qo - djf_2_qf4; 
 
%Find the square of each element in the error matrix 
djf_2_se1 = zeros(70,29); 
djf_2_se2 = zeros(70,29); 
djf_2_se3 = zeros(70,29); 
djf_2_se4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        djf_2_se1(yr,loc) = djf_2_e1(yr,loc)^2; 
        djf_2_se2(yr,loc) = djf_2_e2(yr,loc)^2; 
        djf_2_se3(yr,loc) = djf_2_e3(yr,loc)^2; 
        djf_2_se4(yr,loc) = djf_2_e4(yr,loc)^2; 
    end 
end 
 
%Find the mean of the squared errors at each qauge location 
djf_2_mse1 = mean(djf_2_se1,1); 
djf_2_mse2 = mean(djf_2_se2,1); 
djf_2_mse3 = mean(djf_2_se3,1); 
djf_2_mse4 = mean(djf_2_se4,1); 
 
%Find the root of the mean squared error at each location 
djf_2_rmse1 = sqrt(djf_2_mse1); 
djf_2_rmse2 = sqrt(djf_2_mse2); 
djf_2_rmse3 = sqrt(djf_2_mse3); 
djf_2_rmse4 = sqrt(djf_2_mse4); 
 
%Compare the results here with the rmse30 vector to assess 
%the improvement in the forecast skill compared to the 30-mean 
djf_2_comp1 = zeros(1,29); 
djf_2_comp2 = zeros(1,29); 
djf_2_comp3 = zeros(1,29); 
djf_2_comp4 = zeros(1,29); 
for loc = 1:29; 
    djf_2_comp1(loc) = (rmse30(loc) - djf_2_rmse1(loc)) / rmse30(loc); 
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    djf_2_comp2(loc) = (rmse30(loc) - djf_2_rmse2(loc)) / rmse30(loc); 
    djf_2_comp3(loc) = (rmse30(loc) - djf_2_rmse3(loc)) / rmse30(loc); 
    djf_2_comp4(loc) = (rmse30(loc) - djf_2_rmse4(loc)) / rmse30(loc); 
end 
 
djf_2_sk = 100*[djf_2_comp1' djf_2_comp2' djf_2_comp3' djf_2_comp4']; 
 
%--------------------------------------------- 
% Recalculate for JFM | Lag = 0 Year 
%--------------------------------------------- 
%Divide out the forecast values into each alternative for this lag time 
jfm_0_qf1 = jfm_fall(1:29,:)'; 
jfm_0_qf2 = jfm_fall(30:58,:)'; 
jfm_0_qf3 = jfm_fall(59:87,:)'; 
jfm_0_qf4 = jfm_fall(88:116,:)'; 
 
% Find difference between forecast values and observed values at 
% each station (the error matrix). 
jfm_0_e1 = qo - jfm_0_qf1; 
jfm_0_e2 = qo - jfm_0_qf2; 
jfm_0_e3 = qo - jfm_0_qf3; 
jfm_0_e4 = qo - jfm_0_qf4; 
 
%Find the square of each element in the error matrix 
jfm_0_se1 = zeros(70,29); 
jfm_0_se2 = zeros(70,29); 
jfm_0_se3 = zeros(70,29); 
jfm_0_se4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        jfm_0_se1(yr,loc) = jfm_0_e1(yr,loc)^2; 
        jfm_0_se2(yr,loc) = jfm_0_e2(yr,loc)^2; 
        jfm_0_se3(yr,loc) = jfm_0_e3(yr,loc)^2; 
        jfm_0_se4(yr,loc) = jfm_0_e4(yr,loc)^2; 
    end 
end 
 
%Find the mean of the squared errors at each qauge location 
jfm_0_mse1 = mean(jfm_0_se1,1); 
jfm_0_mse2 = mean(jfm_0_se2,1); 
jfm_0_mse3 = mean(jfm_0_se3,1); 
jfm_0_mse4 = mean(jfm_0_se4,1); 
 
%Find the root of the mean squared error at each location 
jfm_0_rmse1 = sqrt(jfm_0_mse1); 
jfm_0_rmse2 = sqrt(jfm_0_mse2); 
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jfm_0_rmse3 = sqrt(jfm_0_mse3); 
jfm_0_rmse4 = sqrt(jfm_0_mse4); 
 
%Compare the results here with the rmse30 vector to assess 
%the improvement in the forecast skill compared to the 30-mean 
jfm_0_comp1 = zeros(1,29); 
jfm_0_comp2 = zeros(1,29); 
jfm_0_comp3 = zeros(1,29); 
jfm_0_comp4 = zeros(1,29); 
for loc = 1:29; 
    jfm_0_comp1(loc) = (rmse30(loc) - jfm_0_rmse1(loc)) / rmse30(loc); 
    jfm_0_comp2(loc) = (rmse30(loc) - jfm_0_rmse2(loc)) / rmse30(loc); 
    jfm_0_comp3(loc) = (rmse30(loc) - jfm_0_rmse3(loc)) / rmse30(loc); 
    jfm_0_comp4(loc) = (rmse30(loc) - jfm_0_rmse4(loc)) / rmse30(loc); 
end 
 
jfm_0_sk = 100*[jfm_0_comp1' jfm_0_comp2' jfm_0_comp3' jfm_0_comp4']; 
 
%--------------------------------------------- 
% Recalculate for JFM | Lag = 1 Year 
%--------------------------------------------- 
%Divide out the forecast values into each alternative for this lag time 
jfm_1_qf1 = jfm_fall(117:145,:)'; 
jfm_1_qf2 = jfm_fall(146:174,:)'; 
jfm_1_qf3 = jfm_fall(175:203,:)'; 
jfm_1_qf4 = jfm_fall(204:232,:)'; 
 
% Find difference between forecast values and observed values at 
% each station (the error matrix). 
jfm_1_e1 = qo - jfm_1_qf1; 
jfm_1_e2 = qo - jfm_1_qf2; 
jfm_1_e3 = qo - jfm_1_qf3; 
jfm_1_e4 = qo - jfm_1_qf4; 
 
%Find the square of each element in the error matrix 
jfm_1_se1 = zeros(70,29); 
jfm_1_se2 = zeros(70,29); 
jfm_1_se3 = zeros(70,29); 
jfm_1_se4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        jfm_1_se1(yr,loc) = jfm_1_e1(yr,loc)^2; 
        jfm_1_se2(yr,loc) = jfm_1_e2(yr,loc)^2; 
        jfm_1_se3(yr,loc) = jfm_1_e3(yr,loc)^2; 
        jfm_1_se4(yr,loc) = jfm_1_e4(yr,loc)^2; 
    end 
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end 
 
%Find the mean of the squared errors at each qauge location 
jfm_1_mse1 = mean(jfm_1_se1,1); 
jfm_1_mse2 = mean(jfm_1_se2,1); 
jfm_1_mse3 = mean(jfm_1_se3,1); 
jfm_1_mse4 = mean(jfm_1_se4,1); 
 
%Find the root of the mean squared error at each location 
jfm_1_rmse1 = sqrt(jfm_1_mse1); 
jfm_1_rmse2 = sqrt(jfm_1_mse2); 
jfm_1_rmse3 = sqrt(jfm_1_mse3); 
jfm_1_rmse4 = sqrt(jfm_1_mse4); 
 
%Compare the results here with the rmse30 vector to assess 
%the improvement in the forecast skill compared to the 30-mean 
jfm_1_comp1 = zeros(1,29); 
jfm_1_comp2 = zeros(1,29); 
jfm_1_comp3 = zeros(1,29); 
jfm_1_comp4 = zeros(1,29); 
for loc = 1:29; 
    jfm_1_comp1(loc) = (rmse30(loc) - jfm_1_rmse1(loc)) / rmse30(loc); 
    jfm_1_comp2(loc) = (rmse30(loc) - jfm_1_rmse2(loc)) / rmse30(loc); 
    jfm_1_comp3(loc) = (rmse30(loc) - jfm_1_rmse3(loc)) / rmse30(loc); 
    jfm_1_comp4(loc) = (rmse30(loc) - jfm_1_rmse4(loc)) / rmse30(loc); 
end 
 
jfm_1_sk = 100*[jfm_1_comp1' jfm_1_comp2' jfm_1_comp3' jfm_1_comp4']; 
 
%--------------------------------------------- 
% Recalculate for JFM | Lag = 2 Year 
%--------------------------------------------- 
%Divide out the forecast values into each alternative for this lag time 
jfm_2_qf1 = jfm_fall(233:261,:)'; 
jfm_2_qf2 = jfm_fall(262:290,:)'; 
jfm_2_qf3 = jfm_fall(291:319,:)'; 
jfm_2_qf4 = jfm_fall(320:348,:)'; 
 
% Find difference between forecast values and observed values at 
% each station (the error matrix). 
jfm_2_e1 = qo - jfm_2_qf1; 
jfm_2_e2 = qo - jfm_2_qf2; 
jfm_2_e3 = qo - jfm_2_qf3; 
jfm_2_e4 = qo - jfm_2_qf4; 
 
%Find the square of each element in the error matrix 
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jfm_2_se1 = zeros(70,29); 
jfm_2_se2 = zeros(70,29); 
jfm_2_se3 = zeros(70,29); 
jfm_2_se4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        jfm_2_se1(yr,loc) = jfm_2_e1(yr,loc)^2; 
        jfm_2_se2(yr,loc) = jfm_2_e2(yr,loc)^2; 
        jfm_2_se3(yr,loc) = jfm_2_e3(yr,loc)^2; 
        jfm_2_se4(yr,loc) = jfm_2_e4(yr,loc)^2; 
    end 
end 
 
%Find the mean of the squared errors at each qauge location 
jfm_2_mse1 = mean(jfm_2_se1,1); 
jfm_2_mse2 = mean(jfm_2_se2,1); 
jfm_2_mse3 = mean(jfm_2_se3,1); 
jfm_2_mse4 = mean(jfm_2_se4,1); 
 
%Find the root of the mean squared error at each location 
jfm_2_rmse1 = sqrt(jfm_2_mse1); 
jfm_2_rmse2 = sqrt(jfm_2_mse2); 
jfm_2_rmse3 = sqrt(jfm_2_mse3); 
jfm_2_rmse4 = sqrt(jfm_2_mse4); 
 
%Compare the results here with the rmse30 vector to assess 
%the improvement in the forecast skill compared to the 30-mean 
jfm_2_comp1 = zeros(1,29); 
jfm_2_comp2 = zeros(1,29); 
jfm_2_comp3 = zeros(1,29); 
jfm_2_comp4 = zeros(1,29); 
for loc = 1:29; 
    jfm_2_comp1(loc) = (rmse30(loc) - jfm_2_rmse1(loc)) / rmse30(loc); 
    jfm_2_comp2(loc) = (rmse30(loc) - jfm_2_rmse2(loc)) / rmse30(loc); 
    jfm_2_comp3(loc) = (rmse30(loc) - jfm_2_rmse3(loc)) / rmse30(loc); 
    jfm_2_comp4(loc) = (rmse30(loc) - jfm_2_rmse4(loc)) / rmse30(loc); 
end 
 
jfm_2_sk = 100*[jfm_2_comp1' jfm_2_comp2' jfm_2_comp3' jfm_2_comp4']; 
 
%--------------------------------------------- 
% Recalculate for FMA | Lag = 0 Year 
%--------------------------------------------- 
 
%Divide out the forecast values into each alternative for this lag time 
fma_0_qf1 = fma_fall(1:29,:)'; 
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fma_0_qf2 = fma_fall(30:58,:)'; 
fma_0_qf3 = fma_fall(59:87,:)'; 
fma_0_qf4 = fma_fall(88:116,:)'; 
 
% Find difference between forecast values and observed values at 
% each station (the error matrix). 
fma_0_e1 = qo - fma_0_qf1; 
fma_0_e2 = qo - fma_0_qf2; 
fma_0_e3 = qo - fma_0_qf3; 
fma_0_e4 = qo - fma_0_qf4; 
 
%Find the square of each element in the error matrix 
fma_0_se1 = zeros(70,29); 
fma_0_se2 = zeros(70,29); 
fma_0_se3 = zeros(70,29); 
fma_0_se4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        fma_0_se1(yr,loc) = fma_0_e1(yr,loc)^2; 
        fma_0_se2(yr,loc) = fma_0_e2(yr,loc)^2; 
        fma_0_se3(yr,loc) = fma_0_e3(yr,loc)^2; 
        fma_0_se4(yr,loc) = fma_0_e4(yr,loc)^2; 
    end 
end 
 
%Find the mean of the squared errors at each qauge location 
fma_0_mse1 = mean(fma_0_se1,1); 
fma_0_mse2 = mean(fma_0_se2,1); 
fma_0_mse3 = mean(fma_0_se3,1); 
fma_0_mse4 = mean(fma_0_se4,1); 
 
%Find the root of the mean squared error at each location 
fma_0_rmse1 = sqrt(fma_0_mse1); 
fma_0_rmse2 = sqrt(fma_0_mse2); 
fma_0_rmse3 = sqrt(fma_0_mse3); 
fma_0_rmse4 = sqrt(fma_0_mse4); 
 
%Compare the results here with the rmse30 vector to assess 
%the improvement in the forecast skill compared to the 30-mean 
fma_0_comp1 = zeros(1,29); 
fma_0_comp2 = zeros(1,29); 
fma_0_comp3 = zeros(1,29); 
fma_0_comp4 = zeros(1,29); 
for loc = 1:29; 
    fma_0_comp1(loc) = (rmse30(loc) - fma_0_rmse1(loc)) / rmse30(loc); 
    fma_0_comp2(loc) = (rmse30(loc) - fma_0_rmse2(loc)) / rmse30(loc); 
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    fma_0_comp3(loc) = (rmse30(loc) - fma_0_rmse3(loc)) / rmse30(loc); 
    fma_0_comp4(loc) = (rmse30(loc) - fma_0_rmse4(loc)) / rmse30(loc); 
end 
 
fma_0_sk = 100*[fma_0_comp1' fma_0_comp2' fma_0_comp3' fma_0_comp4']; 
 
%--------------------------------------------- 
% Recalculate for FMA | Lag = 1 Year 
%--------------------------------------------- 
%Divide out the forecast values into each alternative for this lag time 
fma_1_qf1 = fma_fall(117:145,:)'; 
fma_1_qf2 = fma_fall(146:174,:)'; 
fma_1_qf3 = fma_fall(175:203,:)'; 
fma_1_qf4 = fma_fall(204:232,:)'; 
 
% Find difference between forecast values and observed values at 
% each station (the error matrix). 
fma_1_e1 = qo - fma_1_qf1; 
fma_1_e2 = qo - fma_1_qf2; 
fma_1_e3 = qo - fma_1_qf3; 
fma_1_e4 = qo - fma_1_qf4; 
 
%Find the square of each element in the error matrix 
fma_1_se1 = zeros(70,29); 
fma_1_se2 = zeros(70,29); 
fma_1_se3 = zeros(70,29); 
fma_1_se4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        fma_1_se1(yr,loc) = fma_1_e1(yr,loc)^2; 
        fma_1_se2(yr,loc) = fma_1_e2(yr,loc)^2; 
        fma_1_se3(yr,loc) = fma_1_e3(yr,loc)^2; 
        fma_1_se4(yr,loc) = fma_1_e4(yr,loc)^2; 
    end 
end 
 
%Find the mean of the squared errors at each qauge location 
fma_1_mse1 = mean(fma_1_se1,1); 
fma_1_mse2 = mean(fma_1_se2,1); 
fma_1_mse3 = mean(fma_1_se3,1); 
fma_1_mse4 = mean(fma_1_se4,1); 
 
%Find the root of the mean squared error at each location 
fma_1_rmse1 = sqrt(fma_1_mse1); 
fma_1_rmse2 = sqrt(fma_1_mse2); 
fma_1_rmse3 = sqrt(fma_1_mse3); 
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fma_1_rmse4 = sqrt(fma_1_mse4); 
 
%Compare the results here with the rmse30 vector to assess 
%the improvement in the forecast skill compared to the 30-mean 
fma_1_comp1 = zeros(1,29); 
fma_1_comp2 = zeros(1,29); 
fma_1_comp3 = zeros(1,29); 
fma_1_comp4 = zeros(1,29); 
for loc = 1:29; 
    fma_1_comp1(loc) = (rmse30(loc) - fma_1_rmse1(loc)) / rmse30(loc); 
    fma_1_comp2(loc) = (rmse30(loc) - fma_1_rmse2(loc)) / rmse30(loc); 
    fma_1_comp3(loc) = (rmse30(loc) - fma_1_rmse3(loc)) / rmse30(loc); 
    fma_1_comp4(loc) = (rmse30(loc) - fma_1_rmse4(loc)) / rmse30(loc); 
end 
fma_1_sk = 100*[fma_1_comp1' fma_1_comp2' fma_1_comp3' fma_1_comp4']; 
 
%--------------------------------------------- 
% Recalculate for FMA | Lag = 2 Year 
%--------------------------------------------- 
%Divide out the forecast values into each alternative for this lag time 
fma_2_qf1 = fma_fall(233:261,:)'; 
fma_2_qf2 = fma_fall(262:290,:)'; 
fma_2_qf3 = fma_fall(291:319,:)'; 
fma_2_qf4 = fma_fall(320:348,:)'; 
 
% Find difference between forecast values and observed values at 
% each station (the error matrix). 
fma_2_e1 = qo - fma_2_qf1; 
fma_2_e2 = qo - fma_2_qf2; 
fma_2_e3 = qo - fma_2_qf3; 
fma_2_e4 = qo - fma_2_qf4; 
 
%Find the square of each element in the error matrix 
fma_2_se1 = zeros(70,29); 
fma_2_se2 = zeros(70,29); 
fma_2_se3 = zeros(70,29); 
fma_2_se4 = zeros(70,29); 
for loc = 1:29 
    for yr = 1:70 
        fma_2_se1(yr,loc) = fma_2_e1(yr,loc)^2; 
        fma_2_se2(yr,loc) = fma_2_e2(yr,loc)^2; 
        fma_2_se3(yr,loc) = fma_2_e3(yr,loc)^2; 
        fma_2_se4(yr,loc) = fma_2_e4(yr,loc)^2; 
    end 
end 
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%Find the mean of the squared errors at each qauge location 
fma_2_mse1 = mean(fma_2_se1,1); 
fma_2_mse2 = mean(fma_2_se2,1); 
fma_2_mse3 = mean(fma_2_se3,1); 
fma_2_mse4 = mean(fma_2_se4,1); 
 
%Find the root of the mean squared error at each location 
fma_2_rmse1 = sqrt(fma_2_mse1); 
fma_2_rmse2 = sqrt(fma_2_mse2); 
fma_2_rmse3 = sqrt(fma_2_mse3); 
fma_2_rmse4 = sqrt(fma_2_mse4); 
 
%Compare the results here with the rmse30 vector to assess 
%the improvement in the forecast skill compared to the 30-mean 
fma_2_comp1 = zeros(1,29); 
fma_2_comp2 = zeros(1,29); 
fma_2_comp3 = zeros(1,29); 
fma_2_comp4 = zeros(1,29); 
for loc = 1:29; 
    fma_2_comp1(loc) = (rmse30(loc) - fma_2_rmse1(loc)) / rmse30(loc); 
    fma_2_comp2(loc) = (rmse30(loc) - fma_2_rmse2(loc)) / rmse30(loc); 
    fma_2_comp3(loc) = (rmse30(loc) - fma_2_rmse3(loc)) / rmse30(loc); 
    fma_2_comp4(loc) = (rmse30(loc) - fma_2_rmse4(loc)) / rmse30(loc); 
end 
 
fma_2_sk = 100*[fma_2_comp1' fma_2_comp2' fma_2_comp3' fma_2_comp4']; 
toc 
 
rmse_0675 = [djf_0_sk jfm_0_sk fma_0_sk djf_1_sk jfm_1_sk fma_1_sk djf_2_sk 
jfm_2_sk fma_2_sk]; 
xlswrite('L:/Kenneth Data/Matlab/Phase2/Hondo.xls',rmse_0675, 'RMSE','B2'); 
save rmse_0675 rmse_0675 
toc 
 

A1.5.6 Forecast and Error Plotting Code 

%------------------------------------------------------------------------- 
%Code to plot the forecast and observed values at certain stations 
%------------------------------------------------------------------------- 
 
%Read in the proper values from the forecast array, and the relative error 
%arrays 
load f_0655; load re_0655_all; load qoyr_all 
load f_5605; load re_5605_all; 
load f_clim; 
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%Pull out the observed flow for the eight gauges used for plotting: 
o = qoyr_all; 
obs = [o(1:100,1) o(1:100,3) o(1:100,4) o(1:100,9) ... 
    o(1:100,12) o(1:100,18) o(1:100,20) o(1:100,27)]; 
clear o 
 
%Pull out the 8 gauges that will be displayed from the RE array. 
a = re_0655_all; 
aa = [a(:,59,2) a(:,61,2) a(:,62,2) a(:,67,2) a(:,70,2) a(:,76,2) a(:,78,2) a(:,85,2) ... 
    a(:,175,2) a(:,177,2) a(:,178,2) a(:,183,2) a(:,186,2) a(:,192,2) a(:,194,2) a(:,201,2) ... 
    a(:,291,2) a(:,293,2) a(:,294,2) a(:,299,2) a(:,302,2) a(:,308,2) a(:,310,2) a(:,317,2)]; 
re1 = 100*reshape(aa,50,8,3); clear a; clear aa 
 
b = re_5605_all; 
bb = [b(:,59,2) b(:,61,2) b(:,62,2) b(:,67,2) b(:,70,2) b(:,76,2) b(:,78,2) b(:,85,2) ... 
    b(:,175,2) b(:,177,2) b(:,178,2) b(:,183,2) b(:,186,2) b(:,192,2) b(:,194,2) b(:,201,2) ... 
    b(:,291,2) b(:,293,2) b(:,294,2) b(:,299,2) b(:,302,2) b(:,308,2) b(:,310,2) b(:,317,2)]; 
re2 = 100*reshape(bb,50,8,3); clear b; clear bb; 
 
%Pull out the eight guages that will be used for the forecast matrix 
fa = f_0655; 
faa = [fa(:,59,2) fa(:,61,2) fa(:,62,2) fa(:,67,2) fa(:,70,2) fa(:,76,2) fa(:,78,2) fa(:,85,2) ... 
    fa(:,175,2) fa(:,177,2) fa(:,178,2) fa(:,183,2) fa(:,186,2) fa(:,192,2) fa(:,194,2) 
fa(:,201,2) ... 
    fa(:,291,2) fa(:,293,2) fa(:,294,2) fa(:,299,2) fa(:,302,2) fa(:,308,2) fa(:,310,2) 
fa(:,317,2)]; 
fcast1 = reshape(faa,50,8,3); clear fa; clear faa; 
 
fb = f_5605; 
fbb = [fb(:,59,2) fb(:,61,2) fb(:,62,2) fb(:,67,2) fb(:,70,2) fb(:,76,2) fb(:,78,2) fb(:,85,2) ... 
    fb(:,175,2) fb(:,177,2) fb(:,178,2) fb(:,183,2) fb(:,186,2) fb(:,192,2) fb(:,194,2) 
fb(:,201,2) ... 
    fb(:,291,2) fb(:,293,2) fb(:,294,2) fb(:,299,2) fb(:,302,2) fb(:,308,2) fb(:,310,2) 
fb(:,317,2)]; 
fcast2 = reshape(fbb,50,8,3); clear fb; clear fbb; 
 
fcast3 = [f_clim(:,1) f_clim(:,3) f_clim(:,4) f_clim(:,9) f_clim(:,12) ... 
    f_clim(:,18) f_clim(:,20) f_clim(:,27)]; 
 
%Create the index labels and the -0.5 and 0.5 lines for the RE plots 
x1 = 1906:1:1955; x2 = 1956:1:2005; x3 = 1906:1:2005; 
line2 = zeros(100,1); 
line1 = line2-50; 
line3 = line2+50; 
lines = [line1 line2 line3]; 
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titlesa = {'09072500','09109000','09124700','09211200',... 
    '09251000','09355500','09380000','09426000'}; 
titlesb = {'Colorado at Glenwood Springs, CO','Taylor below Taylor Park Res',... 
    'Gunnison above Blue Mesa Res','Green below Fontenelle Res',... 
    'Yampa near Maybell, CO','San Juan near Archuleta, NM', ... 
    'Colorado at Lees Ferry, AZ','Bill Williams below Alamo Dam'}; 
figs = {'(a)','(b)','(c)','(d)','(e)','(f)','(g)','(h)'}; 
 
%create plots at each station of the forecast and observed values 
%Create position array 
l = 0.1; b = 0.05; h = 0.15; w = 0.39; 
p1 = [l .5+l l .5+l l .5+l l .5+l]; 
p2 = [b+.75 b+.75 b+.5 b+.5 b+.25 b+.25 b b]; 
p3 = [w w w w w w w w]; 
p4 = [h h h h h h h h]; 
 
pos = [p1' p2' p3' p4']; 
 
figure 
set(gcf,'PaperPosition',[.75 1 7 9]) 
for j = 1:8 
subplot(4,2,j,'Position',pos(j,:));   
%plot(x1,fcast1(:,j,1),'g-'); hold on 
plot(x1,fcast1(:,j,2),'b-'); hold on 
%plot(x1,fcast1(:,j,3),'r-'); hold on 
%plot(x2,fcast2(:,j,1),'g-'); hold on 
plot(x2,fcast2(:,j,2),'b-'); hold on 
%plot(x2,fcast2(:,j,3),'r-'); hold on 
plot(x3,obs(:,j),'k-'); hold on; 
plot(x3,fcast3(:,j),'k--'); 
title({titlesa{j},titlesb{j}},'FontName','Times'); 
xlabel(figs{j},'FontName','Times'); 
ylabel({'Streamflow','Vol (MAF)'},'FontName','Times') 
end 
 
%create plots of the relative errors at each gauge location 
figure 
set(gcf,'PaperPosition',[.75 1 7 9]) 
for k = 1:8 
    subplot(4,2,k,'Position',pos(k,:)); 
patch([1931 1931 1940 1940],[-100 100 100 -100],... 
    [255/255 234/255 170/255], 'EdgeColor','none'); hold on 
%patch([1943 1943 1946 1946],[-100 100 100 -100],... 
%    [255/255 234/255 170/255], 'EdgeColor','none');  
patch([1950 1950 1956 1956],[-100 100 100 -100],... 
    [255/255 234/255 170/255],'EdgeColor','none');  
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patch([1959 1959 1969 1969],[-100 100 100 -100],... 
    [255/255 234/255 170/255],'EdgeColor','none');   
%patch([1972 1972 1977 1977],[-100 100 100 -100],... 
%    [255/255 234/255 170/255],'EdgeColor','none');  
patch([1988 1988 1996 1996],[-100 100 100 -100],... 
    [255/255 234/255 170/255],'EdgeColor','none');  
patch([2000 2000 2005 2005],[-100 100 100 -100],... 
    [255/255 234/255 170/255],'EdgeColor','none'); 
%plot(x1,re1(:,k,1),'r-'); hold on;  
plot(x1,re1(:,k,2),'b-'); hold on;  
%plot(x1,re1(:,k,3),'g-'); hold on; 
%plot(x2,re2(:,k,1),'r-'); hold on;  
plot(x2,re2(:,k,2),'b-'); hold on;  
%plot(x2,re2(:,k,3),'g-'); hold on; 
plot(x3,lines(:,1),'k:'); hold on; 
plot(x3,lines(:,2),'k-'); hold on; 
plot(x3,lines(:,3),'k:'); hold on; 
axis([1905 2005 -100 100]); 
title({titlesa{k},titlesb{k}},'FontName','Times'); 
xlabel(figs{k},'FontName','Times'); 
ylabel('% Rel. Error','FontName','Times') 
end 
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APPENDIX 2 

SUPPLEMENTAL FIGURES 

 

  

 

 

 

 

 

 

Heterogeneous correlation map created form the SVD analysis between yearly SST 
values from one water year compared with yearly streamflow volume for the following 

water year. 
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0-Year lag scatter plots of forecast and observed values (gauges 1 – 10) 
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0-Year lag scatter plots of forecast and observed values (gauges 11 – 20) 
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0-Year lag scatter plots of forecast and observed values (gauges 21 – 30) 
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1-Year lag scatter plots of forecast and observed values (gauges 1 – 10) 
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1-Year lag scatter plots of forecast and observed values (gauges 11 – 20) 
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1-Year lag scatter plots of forecast and observed values (gauges 21 – 39) 
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2-Year lag scatter plots of forecast and observed values (gauges 1 – 10) 
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2-Year lag scatter plots of forecast and observed values (gauges 11 – 20) 
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2-Year lag scatter plots of forecast and observed values (gauges 21 – 29) 
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0-Year lag relative error plots for forecasts (gauges 1 – 10) whosing the correlation 

values between the forecast and observed 
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0-Year lag relative error plots for forecasts (gauges 11 – 20) whosing the correlation 

values between the forecast and observed 
 



www.manaraa.com

232 

 
0-Year lag relative error plots for forecasts (gauges 21 – 29) whosing the correlation 

values between the forecast and observed 
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1-Year lag relative error plots for forecasts (gauges 1 – 10) whosing the correlation 

values between the forecast and observed 
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1-Year lag relative error plots for forecasts (gauges 11 – 20) whosing the correlation 

values between the forecast and observed 
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1-Year lag relative error plots for forecasts (gauges 21 – 29) whosing the correlation 

values between the forecast and observed 
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2-Year lag relative error plots for forecasts (gauges 1 – 10) whosing the correlation 

values between the forecast and observed 
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2-Year lag relative error plots for forecasts (gauges 11 – 20) whosing the correlation 

values between the forecast and observed 
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2-Year lag relative error plots for forecasts (gauges 21 – 29) whosing the correlation 

values between the forecast and observed 
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